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We demonstrate that a recently developed approach for optimizing atomic structures is very effective for
attacking the Thomson problem of finding the lowest-energy configuration ofN point charges on a unit sphere.
Our approach uses a genetic algorithm, combined with a ‘‘cut and paste’’ scheme of mating, that efficiently
explores the different low-energy structures. Not only have we reproduced the known results for
10<N<132, this approach has allowed us to extend the calculation for allN<200. This has allowed us to
identify series of ‘‘magic’’ numbers, where the lowest-energy structures are particularly stable. Most of these
structures are icosahedral, but we also find low-energy structures that deviate from icosahedral symmetry.

A recurring problem in computational physics and chem-
istry is the minimization of a structure with respect to atomic
positions. One difficulty is the development of an accurate
model of atomic interactions in the material. However, even
once such a model is chosen, optimization is often difficult,
due to the many competing structures that may be locally
stable. This is especially true for noncrystalline structures,
such as atomic clusters and defect structures~such as grain
boundaries or surfaces!.1 While accurate models of materials
are becoming increasingly available, and the computational
time to calculate energies is rapidly decreasing, there have
been relatively few developments in the optimization pro-
cess. Most efforts focus on using some form of steepest-
descent or conjugate gradient relaxation, or Monte Carlo or
molecular-dynamics simulations~including simulated an-
nealing approaches!.

In this paper, we use a recently developed technique2 to
study the long-standing Thomson problem of finding the
lowest-energy configuration ofN point charges on a unit
sphere. The problem we consider here originated with Thom-
son’s ‘‘plum pudding’’ model of the atomic nucleus. This
minimization problem has been attempted by simulated
annealing,3–6 Monte Carlo approaches,7,8 and symmetry
considerations,9 yet none of these techniques have proven as
reliable as the simplest method: a repeated random search
with a steepest-descent relaxation.10–12Thus, this problem is
an ideal benchmark of new global optimization algorithms.

The energy ofN point charges constrained to lie on the
surface of a unit sphere is
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Even for smallN, there are multiple possible stable struc-
tures; forN&20, simulated annealing suffices to locate the
global minimum.3–5 However, this will not suffice once the
number of local minima is large. The difficulty is that the
number of metastable structures grows exponentially10,11

with N, and these approaches do not explore different
minima sufficiently rapidly onceN becomes large (N.70).
ForN;100–110, there are;50–90 metastable states;11 this
grows to; 8000 forN; 200. Furthermore, for many of the

structures, the basin of attraction~or ‘‘catchment region’’!
containing the global minimum is small compared with those
of other minima.11

These difficulties are a generic feature of many systems,
including the related problem of determining structures of
atomic clusters.2,1,13 Often, there are techniques to provide
local optimization, such as steepest-descent or conjugate gra-
dient algorithms. Monte Carlo simulations7 and simulated
annealing3–5 are typically used to explore nearby minima, in
an effort to improve upon the current minimum. The diffi-
culty is that these techniques for ‘‘hopping’’ from one mini-
mum to the next are time consuming, and if there are many
local minima, with large barriers separating them, then these
techniques are not practical. The Thomson problem is a good
example of such a problem. Finding a local minimum from a
random structure is straightforward, but exploring many dif-
ferent minima is not.

We have used a genetic algorithm14 ~GA! to tackle this
problem. The idea is simple: starting with a small set of
initial geometries, a number of structures that derive their
properties from two of the initial geometries are generated.
From this ‘‘population,’’ the lowest-energy~‘‘most fit’’ !
structures are chosen to replace the initial geometries. Re-
peating this process leads to lower-energy structures. In gen-
eral, there may be other search criteria; these may be ac-
counted for directly by constructing a ‘‘fitness’’ function that
reflects the different criteria of interest, and optimizing this
function by selection.14 GA’s have been applied to problems
in a number of fields, but there have been few successful
applications to the physical sciences.15–18

One of the difficulties in the type of problem that we are
considering is that the evaluation of the energy is time con-
suming, especially for problems using more accurate models
of materials. For most current applications of GA’s, the com-
putational effort in calculating the fitness is very small.
Therefore, we cannot afford to use traditional approaches,
which might require calculating the energies of thousands of
structures, most of which would not be competitive.16,17

Our approach is successful because of an interesting mat-
ing algorithm2 that allows for efficient exploration of differ-
ent minima, while preserving the important properties of the
parent structures. Unlike most applications of genetic
algorithms,14,16–18our algorithm is not based upon an artifi-
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cial ‘‘genetic sequence’’: most implementations represent the
parameters of the problem symbolically as a string of num-
bers or characters, and then perform ‘‘mating’’ and ‘‘muta-
tion’’ operations on a set of strings. Such an approach is
inefficient for structural optimization, as many resulting
structures are clearly unphysical. Instead of working with an
artificial genetic sequence, we work directly with the struc-
ture itself. A new candidate structure is generated from two
randomly chosen halves of two parent structures, subject to
the constraint that the correct number of particles is main-
tained. Each candidate is then fully relaxed, using a conju-
gate gradient technique. By breaking with the traditional GA
approaches, we are able to generate new structures that may
retain the important structural features of the parents, while
still being able to explore different local minima in the solu-
tion landscape. This approach has been successful for finding
fullerene structures,2 encouraging us to attempt this problem.

In the work presented here, we began with four random
geometries. Using each possible each pair of initial geom-
etries, we construct 16 more candidate structures.~Note that
a cluster may ‘‘mate’’ with itself, by aligning any two ran-
domly chosen halves of the structure.! From the 20 struc-
tures, we select the best four candidates, choosing only struc-
tures whose energies differ by more thanDE51026 to
ensure that one structure does not dominate the entire popu-
lation.

For 10<N<132, and also forN5192 andN5212, we
found the same minimum energies as given in Refs. 11 and
19. Most strikingly, forN<132, we were almost always able
to find the lowest-energy structures within five generations.
With these successes, we went on to search for the lowest-
energy structures for 133<N<200. The values for
111<N<200 are shown in Table I. We ran these for 10
generations, considering a total of 200 structures. Note that
our technique does not guarantee that the lowest energy will
be found, although we believe that in most cases the final
structure was the global minimum. We fitted the lowest en-
ergies to the form8,11

E~N!5
N2

2
~12aN21/21bN23/2!. ~2!

The fitted values were a51.104 6160.000 01 and
b50.13760.001, in reasonable agreement with the fit of
Erber11 and the calculations of Glasser.8

In Fig. 1, we show the difference between the fitted en-
ergy and the actual value for the lowest-energy structure ob-
tained using our approach. Note that there are a series of
‘‘magic’’ numbers, with particularly low ground-state ener-
gies @relative to the trend given in Eq.~2!#, for N512, 32,
72, 122, 132, 137, 146, 182, and 187. In this series, the

TABLE I. Lowest known energies for 110,N<200.

N E1 N E1 N E1

111 5 515.293 214 59 141 9 016.615 349 19 171 13 386.355 930 72
112 5 618.044 882 33 142 9 148.271 579 99 172 13 547.018 108 80
113 5 721.824 978 03 143 9 280.839 851 19 173 13 708.635 243 04
114 5 826.521 572 16 144 9 414.371 794 46 174 13 871.187 092 30
115 5 932.181 285 78 145 9 548.928 837 23 175 14 034.781 306 94
116 6 038.815 593 58 146 9 684.381 825 58 176 14 199.354 775 65
117 6 146.342 446 58 147 9 820.932 378 38 177 14 364.850 519 22
118 6 254.877 027 79 148 9 958.406 004 27 178 14 531.309 552 93
119 6 364.347 317 48 149 10 096.859 907 40 179 14 698.754 594 23
120 6 474.756 324 98 150 10 236.196 436 70 180 14 867.099 927 53
121 6 586.121 949 58 151 10 376.571 469 28 181 15 036.467 239 78
122 6 698.374 499 26 152 10 517.867 592 88 182 15 206.730 610 91
123 6 811.827 228 17 153 10 660.082 748 24 183 15 378.166 571 04
124 6 926.169 974 19 154 10 803.372 421 14 184 15 550.421 450 32
125 7 041.473 264 02 155 10 947.574 692 28 185 15 723.720 074 08
126 7 157.669 224 87 156 11 092.803 114 78 186 15 897.897 437 05
127 7 274.819 504 68 157 11 238.903 041 16 187 16 072.975 186 32
128 7 393.007 443 07 158 11 385.990 186 20 188 16 249.250 131 48
129 7 512.107 319 27 159 11 534.023 960 96 189 16 426.371 938 87
130 7 632.167 378 91 160 11 683.054 805 55 190 16 604.445 965 00
131 7 753.205 166 94 161 11 833.084 739 47 191 16 783.452 219 37
132 7 875.045 342 80 162 11 984.050 335 81 192 16 963.338 386 46
133 7 998.179 212 90 163 12 136.013 053 22 193 17 144.564 740 88
134 8 122.089 721 19 164 12 288.930 105 32 194 17 326.616 136 47
135 8 246.909 486 99 165 12 442.804 451 37 195 17 509.489 303 93
136 8 372.743 302 54 166 12 597.649 071 32 196 17 693.460 552 12
137 8 499.534 494 78 167 12 753.469 429 75 197 17 878.382 745 77
138 8 627.406 389 88 168 12 910.212 672 27 198 18 064.288 062 96
139 8 756.227 056 95 169 13 068.006 451 13 199 18 251.082 495 64
140 8 885.980 609 04 170 13 226.681 078 60 200 18 438.842 271 98
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structures forN512, 32, 72, 122, 132, and 192 have icosa-
hedral symmetry. The icosahedral structures forN5212,
272, 282, and 312 also have very low energies.19 Icosahedral
structures have been predicted to have the lowest energy,6

but for N542, 92, and 162, the icosahedral structures have
high energies relative to the trend in Eq.~2!.

For most of the lowest-energy structures we found, the
atoms tend to arrange themselves in a triangular configura-
tion, with twelve points that have five near neighbors, and
the rest having six neighbors~see Fig. 2!. With this type of
configuration, the application of Euler’s formula predicts that
the number of faces will beF52N24. This prediction is
confirmed for most of the lowest-energy structures, with
some exceptions~see Ref. 11!. ~The exceptions demonstrate
that not all structures can be uniquely decomposed into
triangles—on some structures, there are rectangular faces.
This counterintuitive result illustrates the difficulties in mak-
ing general statements concerning this problem.! The five-
fold coordinated points tend to separate themselves—
suggesting that the icosahedral structures would be
particularly stable, with each of the fivefold coordinated
points located along a line of fivefold rotational symmetry.

The striking result is that this technique can find the
lowest-energy configurations, both for the high-symmetry
icosahedral structures and also for structures with lower sym-
metry. The structures forN5137, 182, and 187 are distorted
icosahedral structures, withD5 symmetry. TheN5146 struc-
ture, shown in Fig. 2, hasD2 symmetry, much lower than the
symmetries of the other magic numbers. Unlike many of the
structures, in which the fivefold coordinated charges form
equilateral triangles, the fivefold coordinated points are not
in an icosahedral arrangement. Instead, the lines connecting

fivefold coordinated atoms along the shortest distance be-
tween them produce two interlockingC structures. To our
knowledge, no other similar structure has been predicted as
being particularly favorable. We believe that there will be
other magic numbers with similar structures at largerN, and
are currently exploring this.

It may seem surprising that such a simple approach works
where more complicated schemes have not. We believe that
there are two principal features of our technique that are
important. First, we try many different geometries in parallel
rather than exploring phase space in a single series of geom-
etries. Simulated annealing or other techniques may explore
several different local minima with a reasonable computa-
tional effort, but for problems with many minima, these ap-
proaches becomes impractical. This is why a simple random
search is more successful than these approaches. Second, un-
like a random search or more traditional approaches to ge-
netic algorithms, our technique of generating new structures
preserves much of the previous structural optimization that
has occurred. The two halves remain reasonably intact, while
‘‘healing’’ occurs near the joining region. Thus, while we
rapidly explore other minima, we do so with a bias toward
the types of low-energy structures that have already been
obtained.

We believe that these results are an important test of our
optimization technique; they reliably reproduce all of the
known low-energy structures. Our mating algorithm is easily
implemented, computationally efficient, and capable of find-
ing unusual structures. We are currently applying similar
techniques to more realistic atomic models, including
Lennard-Jones and embedded atom clusters, and are explor-
ing ways of optimizing our approach. GA’s have been previ-

FIG. 1. We show the difference between the calculated lowest-
energy configuration and the fit to the form12N

2(11aN21/2

1bN23/2). Note the ‘‘magic numbers’’ atN512, 32, 72, 122, 132,
137, 146, 182, 187, and 192.

FIG. 2. This figure shows the lowest-energy structure for
N5146, looking down one of the twofold axes. We have empha-
sized the fivefold coordinated charges, and indicated the interlock-
ing C structures formed by connecting the fivefold coordinated
charges to their nearest neighbor.

R1742 53J. R. MORRIS, D. M. DEAVEN, AND K. M. HO



ously proven useful in many areas, but have not been as
popular or successful in the physical sciences.15–18We be-
lieve that successes such as ours will allow the strengths of
GA’s to become an effective tool in the physical sciences.
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