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Abstract

This thesis concentrates on a set of problems and approaches relating to the gener-
ation and analysis of spherical codes.

The work was conducted at the University of New South Wales between 2002
and 2006, during a short visit to Vanderbilt University in 2004, and at the University
of Sydney in 2006.

The key results include:

1. A description of an equal area partition of the unit sphere S¢ called the EQ
partition.

2. A detailed description of the EQ algorithm which produces the EQ partition.

3. Proofs that EQ partitions are equal area partitions with small diameter.

4. A detailed description of the construction of a spherical code called the EQ
code, based on the EQ partition.

5. A proof that the sequence of EQ codes is well separated.

6. An examination of the suitability of the EQ codes for polynomial interpola-
tion.

7. An examination of the packing density of the EQ codes.

8. Modified constructions of the EQ codes to allow nesting or to maximize the
packing radius.

9. A scheme to use the EQ partitions and EQ codes for spherical coding and

decoding.



10.

11.

12.

13.

14.

15.

A proof that for 0 < s < d a sequence of S¢ codes which is well separated and
weak star convergent has a Riesz s energy which converges to the correspond-
ing energy double integral.

A bound on the rate of convergence of Riesz s energy given the rate of con-
vergence to zero of the spherical cap discrepancy.

A comparison of Coulomb energy estimate for S? spherical designs given in [73]
with estimates obtained using only the separation and the estimated spherical
cap discrepancy of the spherical designs.

A proof that the EQ codes are weak star convergent.

Estimates of the rate of convergence to zero of the spherical cap discrepancy
of EQ codes.

Estimates of the rate of convergence of Riesz s energy of EQ codes to the

energy double integral.

vi
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CHAPTER 1

Introduction

“Il meglio e ["inimico del bene.”

(The best is the enemy of the good.)

— Voltaire, [158, “Art Dramatique”], translated in [157].

1.1 Good distributions of points on the sphere

This thesis explores the connections between a number of topics related to the

distribution of points on the unit sphere
S?:= {x e R | |x|| =1}, (1.1.1)

where ||x|| is the Euclidean norm of x, ie.

d+1

| =" a3 (1.1.2)
k=1

The unit sphere S¢ defined by (1.1.1) is embedded in the vector space R4 with
centre at the origin.
The topics which are explored in this thesis include partitions, approximation,

interpolation, quadrature and energy.



2 Chapter 1. Introduction

The distribution of points on the unit sphere is a subject area which has many
applications and which gives rise to a number of problems, many of which are un-
solved or are hard in the sense of computational complexity. Two major fields of
study which involve problems of point distributions on the unit sphere are approx-
imation theory and coding theory. These are discussed further in the following
sections. The study of the distribution of points on the unit sphere also arises
naturally in the fields of quantum information theory [125, 127, 126] and number
theory.

One key question addressed in this thesis is
“What is meant by a good distribution of points on the unit sphere?”

It has long been known that for d > 1 there is usually no single answer to this
question, in the sense that the most appropriate definition of goodness depends on
the requirements of the problem to be solved. For example, a set of 169 points
which approximately minimizes the Coulomb energy on S? performs very poorly
when used to interpolate spherical polynomials of total degree at most 12. See
[162, pp. 212-217] for properties of the set computed by Fliege and Maier [56, p.
26] and [161] for the set of lower energy computed by Womersley.

Here, as usual in this thesis, we treat any two finite subsets X,Y c S§¢ as equiva-
lent if X can be mapped onto Y by an orthogonal transformation in R+!,

In many cases it is easier to reason about sequences of finite subsets of the unit
sphere, rather than a single finite subset in isolation. For example, we can use
various definitions of discrepancy [6, 64, 38] [30, Chapter 2] and convergence to
define the concept of asymptotic equidistribution of sequences of finite subsets of
the unit sphere [168, 39].

Also, it is often sufficient to find a sequence of finite subsets which is merely close
enough to optimal with respect to some criterion of goodness, rather than optimal.
This is because the associated optimization problem may be hard in the sense of
computational complexity [76, p. 333], and often exhibits many local minima or

maxima [134, p. 7]. Thus in many cases it is useful to find a construction for finite
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subsets of the unit sphere which is reasonably fast and which is reasonably good

with respect to one criterion or more.

1.2 Approximation on the sphere

The generation and evaluation of good finite subsets of the unit sphere is related in
a number of ways to the subject of approximation on the sphere.

The theory and practice of approximation on the unit sphere is a vast field with
many areas of application [70, 130]. These areas include computational chemistry
[163] , physics [106], astronomy [152, 111, 153], planetary science [97], geosciences
[51, Chapters 2, 4, 7 and 8] [58, 13, 59|, medical imaging [124, Chapter 8], computer
vision [60], sensory physiology [80], bioinformatics [109] and biology [29].

The generic problems of approximation on the unit sphere include:

e Given a finite subset of the unit sphere, with corresponding function values,

find the closest member of a defined function set eg. [107];

e Given a function defined at all points on the unit sphere, or a defined subset

of the unit sphere, find the closest member of a defined function set;

e Given a differential or integral equation on the unit sphere, or a defined subset

of the unit sphere, find an approximate solution, eg. [110].

For some related surveys, see [52, 13].

1.3 Sphere packing, coding theory and communications theory

The connection between communications theory and the study of finite subsets of
higher dimensional unit spheres arguably began with Shannon’s seminal paper of
1959 [140]. This connection is so strong that a finite subset of the unit sphere is
often called a spherical code. This thesis adopts this terminology.

The study of spherical codes often emphasizes their packing and covering prop-
erties. Packing can be defined in terms of the minimum distance between the points
of a spherical code, and leads to the concept of a well separated sequence of codes.
Covering can be defined in terms of the maximum of the distance between any

point on the unit sphere and a point of the code, also known as the mesh norm.
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The study of packings and coverings on the unit sphere well predates Shannon and
could be said to have begun with the kissing problem of Newton and Gregory in
1694 [149, Chapter 5] [119, p. 875].

For a survey on coding theory which mentions its connections to spherical codes
and quantum information theory, see [26]. Other relevant papers on communica-

tions theory, coding theory and spherical codes include [164, 165, 66, 67, 82, 68, 156].

1.4 FEnergy as a criterion of goodness

Given a potential, usually a decreasing function of distance, we can define the energy
of a spherical code. For example, the Riesz s energy is defined using the Riesz r—*
potential [39, 24].

Even though a spherical code has minimal energy for a given potential, that does
not mean that such a code is universally “good”. For example, for any fixed d > 1
there are very few S? codes which are known to minimize all completely monotonic
potentials. The number of such codes currently known is literally just a handful:
between 2 and 5 [33, Table 1, Theorem 1.2].

It is well known that for 0 < s < d an increasing sequence of minimal s energy
finite subsets of S¢ is asymptotically equidistributed [39]. For d — 1 < s < d such
a sequence is also well separated [89]. In this thesis, we examine the concepts
of equidistribution, separation and energy from a different direction. We show
that for 0 < s < d, if a sequence of S? codes is well separated and asymptotically
equidistributed, it has a well behaved s energy. A major part of this thesis is devoted
to the construction of just such a well-behaved sequence and the exploration of some

of its properties.

1.5 Organization and key results of this thesis

This thesis concentrates on a subset of problems and approaches relating to the
generation and analysis of spherical codes. The focus is on theory, construction
and computation rather than on particular applications. The organization and key

results of this thesis are listed below.



1.5. Organization and key results of this thesis )

Chapter 2 of this thesis gives an overview and detailed definitions of the concepts
and structures which are addressed in this thesis.

Chapter 3 of this thesis describes an equal area partition of S?. Building on a
partition algorithm for the unit sphere S2, as described by Rakh-manov, Saff and
Zhou [120] and Zhou [167], and an outline of a construction for S3, as discussed
by Saff [133] and Sloan [141] during 2003 to 2005, the FQ algorithm partitions a
unit sphere in any dimension into regions of equal area and small diameter. The
partition is called an EQ partition. The Matlab implementation of the EQ algorithm
is available via SourceForge [98]. Chapter 3 contains a detailed description of the
EQ algorithm and contains proofs that the EQ partitions are equal area partitions
with small diameter.

Chapter 4 of this thesis describes a spherical code, the EQ code, which uses the
EQ partition for its construction. Chapter 4 contains a detailed description of the
construction of the EQ code and a proof that the sequence of EQ codes is well

separated. Chapter 4 also

e examines the suitability of the EQ codes for polynomial interpolation,

e examines the packing density of the EQ codes,

e cxamines modified constructions to allow nesting or to maximize the packing
radius, and

e examines a scheme to use the EQ partitions and EQ codes for spherical coding

and decoding.

Chapter 5 of this thesis explores the relationships between weak star convergence,
spherical cap discrepancy, minimum separation and energy of spherical codes. A
sequence of spherical codes converges in the weak star sense if the corresponding
equal weighted quadrature rules converge to the integral for all continuous functions
on the sphere. The normalized spherical cap discrepancy of a spherical code is the
supremum over all spherical caps of the difference between the normalized area

of the cap and the proportion of points of the code which lie in the cap. Weak
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star convergence is equivalent to convergence to zero of normalized spherical cap

discrepancy. Chapter 5 contains

e a proof that for 0 < s < d a sequence of S codes which is well separated and
weak star convergent has a Riesz s energy which converges to the correspond-
ing energy double integral,

e a bound on the rate of convergence of energy given the rate of convergence to
zero of the normalized spherical cap discrepancy,

e a proof that the EQ codes are weak star convergent, estimates of the rate of
convergence to zero of the normalized spherical cap discrepancy, and estimates

of the rate of convergence of Riesz s energy to the energy double integral.

Recall that a spherical t-design is an equal weighted quadrature rule on the unit
sphere which is exact for all polynomials of degree up to ¢. In joint work with Hesse
[73] the author proved that for a well separated sequence of spherical designs on
S? such that each t-design has (¢t + 1)? points, the Coulomb energy has the same
first term and a second term of the same order as the minimum Coulomb energy
for S? codes. Chapter 5 contains a comparison of this earlier energy estimate with
estimates obtained using only the separation and the estimated normalized spherical

cap discrepancy of these spherical designs.



CHAPTER 2

Preliminaries

“ ..plano vero sectum sphaericum circulum sectione repraesentat,
mentis creatae, quae corpori regendo sit praefecta, genuinam imaginem,
quae in ea proportione sit ad sphaericum, ut est mens humana ad di-
vanam, ...”

(...when intersected by a plane, the sphere displays in this section the
circle, the genuine image of the created mind, placed in command of the

body which it is appointed to rule; and this circle is to the sphere as the

human mind is to the Mind Divine, . ..)

— Kepler, [83, Book IV, pp. 119-120], quoted and translated in Pauli
117, p. 161].

2.1 Some notation

This section describes some of the notation used in this thesis.

Sequences of spherical codes.
This thesis considers sequences of S¢ codes of the form X = (X3, X»,...), with each
S? code X, being a finite subset of §? of the form X, := {x/1,...,xen;,} C S¢, with the

points of X, distinct, so that A} := |X,|.



8 Chapter 2. Preliminaries

The points of a spherical code are usually called codepoints as a reminder that
the code is a finite set and to distinguish between the codepoints and other points

or subsets of the unit sphere.

Intervals.
This thesis uses the standard notation for intervals on the real line, augmented
by a small amount of arithmetic for the purpose of abbreviation.

For example, the statement = € [a,b) ¢ (where ¢ > 0) means ac < = < be.

Monotonicity and limits.

The notation f(z) / y as z — oo means that f(z) is asymptotically monotonically
increasing with z, with limit y.

Similarly, f(z) \, v as 2 — oo means that f(z) is asymptotically monotonically

decreasing with z, with limit y.

2.2 Trigonometric functions and the Gamma function

Before plunging into the geometry of the sphere and related topics, we list some
properties, identities and estimates related to the well-known trigonometric func-
tions and the Gamma function [2, Chapter 6] [4, Chapter 1]. These prove to be

useful in estimates relating to various aspects of geometry on the sphere.

Trigonometric functions.
The following identities, the addition formulae for trigonometric functions are
well known and are used throughout this thesis.

For all real 0, ¢, the identities

sin(f + ¢) = sinf cos¢ + cosf sing, cos(f + @) = cosf cosp —sinf sin @ (2.2.1)

hold. These identities are easily proven using complex multiplication and Euler’s

formula which states that ¢ = cosf + i sinf for all real 6.
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Later we will need to compare sinf with sin(6 + ¢), for various ¢ and ¢. The

following estimate is useful for this task.

Lemma 2.2.1. For all ,¢ € R we have

sin(f + ¢) —sinf = 2 sin% cos (9 + i) . (2.2.2)

Therefore for ¢ € (0,7], 6 € (0,7/2 — ¢/2] we have sin(d + ¢) > sin6 > 0.

We will also need the well known estimates
[cosf| < 1, (2.2.3)

and for ¢ >0, 6 # 0,

20—1 2 . 92]@

k 20
> (-1F (gk)! <cosf < (~1) ok (2.2.4)
k=0 k=0

The inequality (2.2.4) can be proven using Taylor’s theorem with the Lagrange
formula for the explicit remainder term [135, Theorem 11.6.1 and Corr. 11.6.2, pp.
730-731]. A simple proof of the non-strict version of this inequality appears in [14].

In the estimate below we assume that 6 € (0,¢], ¢ € (0,7/2], and use the well-

known function

sincf := Sine. (2.2.5)
We have the well-known estimate

sinf € [sinc&, 1] 6. (2.2.6)

The Gamma function.

Lemma 2.2.2. The Gamma function has the following well-known properties. For

proofs see the references given with each property.
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. Forz >0,

P(z+1)=aT(x). (2.2.7)

For proof, see [4, (1.1.6)].

. See [146, Chapter 13, Problem 1 (b), p. 287] or [4, (1.1.7), (1.1.8)] for proof

that

(1) =T(2)=1. (2.2.8)

. See [146, Chapter 13, Problem 4, p. 288] or [4, (1.1.22)] for proof that

r <> _ (2.2.9)

. For x > 0, logD'(x) is a strictly convex function of z. That is, for z,y > 0,

a€(0,1),

logT (az + (1 — a)y) < alogD(z) + (1 —a) logI'(y). (2.2.10)

This is called the log-convexity of the Gamma function. For proof, see [152,
Chapter 6, Theorem 8.18, p. 192] or [4, Corollary 1.2.6, p. 13].

. For z >0 we have

r'(2z) T (;) =221 D(z) T <x+ ;) : (2.2.11)

This is called the Legendre duplication formula. For proof, see [4, Theorem
1.5.1, p. 22].

We now have the following estimates.

Lemma 2.2.3. For z > 3 we have

d
%logF(x) > 0. (2.2.12)
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Lemma 2.2.4. For = > 1 we have

['(2z) > 4°'T'(2), (2.2.13)

with equality only when = = 1.

Lemma 2.2.5. For = >0 we have

< V. (2.2.14)

Lemma 2.2.6. For z > 1 we have

D(z +1) < 2. (2.2.15)

with equality only when = = 1.

2.3 The geometry of the unit sphere

This section describes some well known but essential aspects of the geometry of S?.

2.3.1 Small and great spheres and circles, generalized spheres

For the sphere S¢, for k € {2,...,d}, a small sphere or small S* is a non-empty
intersection of S with a k¥ dimensional hyperplane, and a great k-sphere or great
S is the intersection of S¢ with a k¥ dimensional hyperplane through the origin of
R4+ If the hyperplane is 2 dimensional, we have a small circle or a great circle,
respectively. If the hyperplane is d dimensional, we have a small sphere or a great
sphere, respectively.

When this thesis uses the term “hyperplane” without qualification, this generally
means a d dimensional hyperplane in R4+!.

A generalized sphere is either a sphere or a hyperplane.

2.3.2  Fuclidean and spherical distances

The Euclidean distance between two points a,b € S? is defined via the R4*! norm to

be ||a—Db|.
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The Euclidean inner product of two points a,b € S? is the usual inner product

in R¥*! namely

d+1

a-b:= Zakbk' (231)
k=1

We have |x||> = x-x =1 for any x € S°.

Definition 2.3.1. The spherical distance s(a,b) of two points a,b € S is defined as
s(a,b) :=cos !(a-b),

where the inner product is that of (2.5.1).

We extend this definition to distances between a point and a set, and distances
between sets. For example, s(x,Y) is the infimum of the spherical distance between
point x and any point of the set Y c §%.

We now recall a number of well known results relating to spherical distance.

First, for 6 € [0, 7] we define the function

(2.3.2)

Lemma 2.3.2. For ¢,
1. The geodesics are great circles. More precisely, every geodesic is a constant
speed parameterization of an arc of a great circle.
2. The curve of shortest arc length between two points is an arc of a great circle,
with arc length up to .
3. Spherical distance is the same as geodesic arc length, up to r.
4. The relationship between Euclidean distance and spherical distance is inde-

pendent of position in the following sense. For any two points a,b € S,

la =D =T (s(a, b)), (2.3.3)
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where the function Y is defined by (2.5.2).
5. The function Y defined by (2.3.2) is continuous on [0,7] and monotonic in-
creasing on [0,m).

6. For a,B3,a+ B € [0,7] we have

T(a+B) < () + Y(B) (2.3.4)

with equality only when a =0 or 3=0.
7. As a result of Property 5, the function Y has an inverse which is defined on

[0,2]. For this inverse function Y-', for a,b,a+b € [0,2] we have

T (a)+THb) < T Ha+0), (2.3.5)

with equality only when a =0 or b=0.
8. For a,be$?, |la—bl| <s(a,b), with equality only when a=b.

9. For a,beS?,

=)
a—b s(a, b)

(2.3.6)

2.8.8 Spherical polar coordinates
Spherical polar coordinates describe a point a on S? by using one longitude, a; € R,
and d—1 colatitudes, a; € [0, 7], for i € {2,...,d}. The longitude «; is taken modulo 27
so that eg. the coordinates (0,as,...,a4) and (27, as, ..., aq) describe the same point.
The unit sphere S¢ defined by (1.1.1) is embedded in the vector space R4 with
centre at the origin.

A point a € S can therefore be described by its spherical polar coordinates or

by its corresponding Cartesian coordinate vector.



14 Chapter 2. Preliminaries

Definition 2.3.3. We define the spherical polar to Cartesian coordinate map © by

®:Rx 0,71 — 8% c R,

Oar, g,y ..., aq) = (a1,a9,...,a4+1),

where

d

d
a1 := CosS H sinaj, ag:= H sin o,
Jj=2 Jj=1
d
ap := COS Qlp_1 H sinaj, ke{3,...,d+1}.
j=k

For example, if a point a € S? has spherical polar coordinates (¢, ), its Cartesian
coordinates are ©(¢,0) = (siné cos ¢, sin @ sin ¢, cos ).

For d > 1 the coordinate map © defines the major colatitude to be the last one,
Q.

Besides taking the longitude modulo 27, for d > 1 the coordinate map © as given
by Definition 2.3.3 is not one-to-one. In particular, for any (3i,...,84-1) € Rx[0,7]42,

for the North pole eqy, we have
eqt1 :=(0,...,0,1) = @(B1,...,B4-1,0) (2.3.7)
and for the South pole, —eqy1, we have
—eq11:=(0,...,0,-1) = (B4, .., Ba_1,T). (2.3.8)

In this thesis, we identify each point of S? with its Cartesian coordinate vector.
To reduce ambiguity, we use bold Roman lower case letters to stand for points, eg.
a, normal Roman lower case letters to stand for Cartesian coordinates, eg. a;, and
lower case Greek letters to stand for spherical polar coordinates, eg. a;.

The spherical polar coordinates for S can be described in terms of parallels of

latitude and meridians of longitude. Here we generalize these concepts to S¢.
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Definition 2.3.4. Let §¢ denote the unit sphere S? excluding the North and South
poles.

Fora:=o(a1,...,a4-1,04q) € S the parallel through a is
S(a) == {oB,...,Bi-1,a4q) | (B1,...,B4-1) € [0,27) x [0,7]7"} (2.3.9)

and the meridian through a s

O(a) :={o(a1,...,aq-1,0) | B € (0,m)}. (2.3.10)

2.3.4  Stereographic projection

The equator of S¢ lies in the subspace orthogonal to the North pole, that is ej, ,,

where
at:={becR"! |a-b=0} (2.3.11)

The hyperplane ey + ez, is parallel to the equator and passes through the North
pole.

The Stereographic projection
@ R (eqr1 +€yq) — R
based on the North pole es,; is defined by

@ (T1, T2y, Ty Tap1) = W (2.3.12)

Lemma 2.3.5. When restricted to S, the stereographic projection w has the fol-

lowing well-known properties [79, Prop 3, p10].

1. The map w is a one-to-one mapping from S\ ez onto RY.
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See also [45, Example 4.5, p. 19]. (Note: [123, Section 4.2, p. 112] defines

the stereographic projection in the inverse sense).

. The map w is conformal: it preserves angles. That is, at a point a € S%, the

angle between two smooth curves B and C passing through a is the angle o
between their respective tangent vectors. If a is not the North pole then when
we use w to map S\ eqr1 onto R, the curves B and C map to the curves w(B)
and w(C) respectively. The curves w(B) and w(C) pass though the point w(a)
with the angle between the tangent vectors corresponding to w=(B) and w(C)
being o, the same angle as for B and C on S.

See also [71, P.1, pp. 14-16].

. The map @ maps generalized spheres to generalized spheres. More specifically,

great and small spheres in S which do not pass through the North pole map
to spheres in RY; and great and small spheres in S passing through the North
pole map to hyperplanes in R?.

See also [71, P.7.3, p. 29].

Remarks.
1. The stereographic projection based on the South pole —ey;; can be

defined as

(mlaan e 7xd)
w_ed+1(11,Z2,...,xd,$d+1) = m (2313)

2. The stereographic projection w, based on any other point a € S¢
can be defined by first rotating the sphere S? in the hyperplane
containing the meridian ®(a), so that a rotates to the North pole,
then using the projection w.

3. Stereographic projection is much more widely known in the case of
S%. For §?, see for example [22] Section 5.2, Theorems 6, 8 and 7

respectively, where R? is identified with C.
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2.3.5 Spherical caps, collars, zones and spherical rectilinear regions

For d > 1, for any point a € S? and any angle 6 € [0, 7], the closed spherical cap S%(a,8)

18

S(a,f) :={besS? | s(a,b) <6}, (2.3.14)

that is the set of points of S whose spherical distance to a is at most §. The angle ¢
is called the spherical radius of the cap. The notation drops the explicit dependence
on d where this is understood from the context.

Note that the centre of the cap S?(a,0) lies on the sphere S¢ and is not the same
as the centre in R4*! of the small sphere 95S¢(a,#) which is the boundary of the cap.

In this thesis will also use a notation for spherical caps based on the Euclidean
distance between the centre of the cap and the boundary of the cap. If the spherical
radius is 6, this Euclidean distance is Y(0). We therefore define, for a € S¢ and

r€0,2],

S4(a,r) := S%a, Y(r)). (2.3.15)

A closed spherical collar or annulus is the closure of the set difference between
two spherical caps with the same centre and different radii.

For d > 1, a zone is a closed subset of S? which can be described by

Z(a, B) = {1, 7a) €S | va €, B}, (2.3.16)

where 0 < a< g < .
Z(0,a) is a North polar cap, that is a spherical cap with centre the North pole,
and Z(a,m) is a South polar cap. If 0 < a < 3 <7, Z(a, ) is a collar.

We note the following property of spherical distances and spherical caps on S2.

Lemma 2.3.6. Let S be a spherical cap of S* with centre e and let a be any point

of S? other than e or —e. Let D be the great circle through a, e and —e. Then D
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intersects the small circle 0S at two points ¢ and d, where ¢ is the unique point of

dS furthest from a and d is the unique point of S closest to a.

The equatorial map.

Throughout this thesis, for d > 1 we identify the equator of S with the unit
sphere S?-! ¢ R4,

We define the equatorial map I : § — S%1, using the following construction.
Take any point a = G&(ai, . ..,aq) of §¢ and find the intersection between the equator
and @(a), the meridian through a. This is the point a’ = ©(ay,...,aq-1,%). Since we
identify the equator of S? with the unit sphere S¢—! we also identify a’ € S? with
Ha:=o(ai,...,aq_1) € S1. We call I1a the equatorial image of a in S4—1.

By a slight abuse of notation, for any S c S we define the equatorial image of
StobellS:= H(Sﬂéd). Thus the equatorial image of any zone of §¢ is the whole of
s4-1,

The equatorial map has the following properties.

Lemma 2.3.7. Take any point a € $¢, and any other point q € S where q does not
lie on the great circle defined by the meridian ©(a).

Then ©(a) and q define a great S?, which we denote by G(a,q). The meridians
o(a) and ©(q) are also meridians of G(a,q), and all of the meridians of G(a,q) are
meridians of S¢.

The equator of G(a,q) is a great circle through la and M q, and is the same as
the equatorial image T G(a, q).

Lemma 2.3.8. Use the definitions and notation of Lemma 2.3.7. Then for any

X ¢ $¢ we have
(X NG(a,q) = X NTIG(a, q). (2.3.17)

Lemma 2.3.9. Consider a closed spherical cap S(a,®) c §2, where the point a =

O(ar, ). The equatorial image, 1S(a,®) of S(a,®) is the same as the equatorial
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1mage T10S(a, ®) of the boundary of S(a,®). This image is an equatorial arc with the

formula

IIS(a, ®) =110S(a, ®) = S'(a,¢) = © (o1 — ¢, a1 + ¢] (mod 27)), (2.3.18)

where

sin g = — . (2.3.19)

We now consider the equatorial image of a spherical cap in S¢.

Lemma 2.3.10. Consider a closed spherical cap S(a, ®) C §¢, where

a= @(al,ag,...,ad).

The equatorial image, T1S(a, ®) of S(a, ®) is the same as the equatorial image T1OS(a, ®)

of the boundary of S(a,®). This image is a spherical cap in St with the formula

[1S(a, ®) = 19S(a, @) = S~ (11 a, $), (2.3.20)
where
. __ sin®
sin¢ = ey (2.3.21)

Regions which are rectilinear in spherical polar coordinates.
To describe the recursive zonal equal area partition of Chapter 3, we need to

describe regions of the form

RZQ([Tl,Ul] X ... X [Td,vd]), (2322)
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where

1 €0,2n), wvie€(n,n+27, 0<m<uvy<m ke{2,...,d}. (2.3.23)

More specifically, we have the following definition.
Definition 2.3.11. For the pair of d-tuples (r1,...,74), (v1,...,vq) € R x [0, 7] sat-

isfying (2.3.23) we define the region

R((ﬁ,...,Td),(Ul,...,vd)) ={0(a1,...,aq) | ar €[, ve],k€{1,...,d}} (2.3.24)

= @([7’1,7}1] X ... X [Td,’ljd]).

We define a RISC region of S? to be a region of S of the form (2.5.24) — with
RISC being a near-acronym for “rectilinear in spherical polar coordinates”.
Each RISC region of §? can be represented by the pair of d-tuples (r,...,7),

(Ul,...,’t}d).

In particular, for d > 1, a North polar cap of S¢ can be described as

R ((0,0,...,0,0), (27,7, ...,mva)) = © ([0,2,7] x [0,7]92 x [0,v4]),

and a South polar cap of S¢ can be described as

R((0,0,...,O,Td),(27r,7r,...,7r,7r)) =0 ([O,Qﬂ x [0, 7472 x [Td,w]).

Each RISC region of S¢ has 2¢ pseudo-vertices, each of which is a d-tuple in
spherical polar coordinates R x [0,7]¢~. The term “pseudo-vertex” is used because
we may have degenerate cases where the points of S¢ corresponding to two or more
of these 2¢ d-tuples coincide, as must happen when 7, = 0 and v, = 2. In these
degenerate cases, the corresponding point of S? may be an interior point of the

region, or a point where the boundary of the region is smooth. Examples are:
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1. The pair ((0,0), (27,v2)) yields the four pseudo-vertices

{(0,0), (2m,0),(0,v9), (2, Uz)}

and the region R ((0,0), (27, v2)) which is a North polar cap of S2. The pseudo-
vertices (0,0) and (2,0) both correspond to ® ((0,0)), which is the North pole,
an interior point of R ((0,0), (27, v2)).

2. The pair ((0,0,73), (27, v2,v3)) yields the eight pseudo-vertices

{(07 Oa 7-3)7 (27T7 03 7—3)7 (07 U2, 7'3)7 (271-7 U2, T3)a

(07 Oa U3)7 (27Ta 07 U3)a (07 U2, U3)7 (27T7 V2, U3)}'

and the region R ((0,0, 73), (27, v2,v3)) of S* which is a descendant of a polar cap
in S%.
The following elementary relationship between RISC regions follows immediately

from Definition 2.3.11.

Lemma 2.3.12. The equatorial image of a RISC region of S is a region of S—1
which is also RISC. Specifically, we have

IR (1. Ta=1,7a), (V15 ., va-1,v4)) = R ((71,...,7Ta-1), (U1, ..., Va-1)). (2.3.25)

The boundary oR of a RISC region R c §? consists of a set of facets. In general,
each facet is a d — 1 dimensional rectangular prism in spherical polar coordinates,
defined by fixing one of the coordinates of R to be the high or low boundary value.

For example, the top facet of

R:= R((Tl,...,Td,l,Td%(Ul,...,Udfl,vd))
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is

FarRi=0 (0] % [ra,va] % ... x {7a}), (2.3.26)
the bottom facet is

FayRi=0 ([r, 0] % [ra,09] % ... x {va}), (2.3.27)
the west facet of R is

FriRi=0 ({n} % [rav] x ... % [7a,04]), (2.3.28)
and the east facet is

FriRi=0 ({1} % [r2,02] % ... % [ra,v4). (2.3.29)

A facet which forms part of the boundary of a RISC region is called a boundary
facet.

If a facet has a colatitude which is fixed at 0 or = then the facet is said to be
degenerate. A degenerate facet is not a boundary facet, but rather an artifact of
the spherical polar coordinate system.

Also, if

R =0 ([0,27] x [r2,v2] X ... X [7a,v4])

then the east and west facets coincide and neither is a boundary facet.
If R does not intersect either the North or South poles of S¢, then R must contain
at least a top facet and a bottom facet.

The top boundary of a region R c §¢ is

O'R:=0RNFy41R, (2.3.30)
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the bottom boundary is

O'R:=0RNFq R, (2.3.31)

and the top and bottom boundary is

d'R:=9'RUI'R. (2.3.32)

A side facet is defined to be any boundary facet other than the top facet or the
bottom facet. In the case where all facets are boundary facets, the boundary oR
consists of the top and bottom facets and 2 (d — 1) side facets.

A side facet has either a fixed longitude, eg.
FiiR=0 ({n} x [r2,02] % ... x [ra,va)),
or a fixed colatitude (other than the main colatitude), eg.
Fa R=0 ([r1,v1] x {va} x ... % [ra,va)).
The side boundary of R is
d_R:=0dR\d'R. (2.3.33)

Lemma 2.3.13. If R is a RISC region of S¢ which does not intersect either the
North or South poles then O1IR is the image under 11 of the side boundary of R. In

other words,

ONIR=TII0_R. (2.3.34)
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2.3.6 The area of spheres and spherical caps

The area of a sphere.
We use o4 to denote the Lebesgue area measure on S, and we often drop the
subscript where the dimension d is understood from the context.

For d > 0, the area of the sphere S¢ c R is given by [112, p. 1]

d+1
2m 2

r(Gh)

wq = 04(S?) =

(2.3.35)

Remarks. This usage of w; agrees with Miiller [112] and Reimer [124],
but not with Landkof [93, Chapter 1, 2, p. 45] or Andrews, Askey and

Roy [4, Section 9.6, p. 455], who would put ws; where we have wy.

The area of a spherical cap.
It is well known ([140, (21), p. 623], [112], [94, Lemma 4.1 p. 255]) that the

area of a spherical cap S(x, ) of spherical radius ¢ and centre x is

6
Vi(0) := 0 (S(x,0)) = wd,l/ sin?~t¢ de, (2.3.36)

0

independent of x.
It can be readily seen that V,(0) = 4 wsin® (£) and Vs3(0) = m (20 — sin(26)).
In this thesis, where we use the Euclidean notation for a spherical cap Sg(x, R),

we may also need the area as a function of the Euclidean distance R. We therefore

define

T(R)
Vi, d(R) =0 (Sg(x,R)) = wd_l/ sin? !¢ de, (2,3.37)
0

independent of x. It is well known that the integral above can be expressed without

the use of trigonometric functions.



2.3. The geometry of the unit sphere 25

Lemma 2.3.14. For R € (0,2] and any x € S¢, the area integral Vi 4(R) defined by

(2.3.37) can be evaluated by

R T2
VealR) =wiy [ 11 (1—4) dr. (2.3.38)
0

The area of a spherical cap can also be described using the incomplete Beta

function.

Lemma 2.3.15.

where B(z;a,b) is the incomplete Beta function [47] and B(a,b) is the Beta function.
The function I of Lemma 2.3.15 is variously called the incomplete Beta function
ratio [81, Chapter 25, p. 211], the regularized Beta function [160], the cumulative
distribution function of the Beta distribution. Somewhat confusingly, some authors
call I the incomplete Beta function [2, Section 26.5] [15].
The incomplete Beta function can be expressed as a hypergeometric function [2,

26.5.23|, as

a

B(z;a,b) = % oF (a,1 —b;a+ 1;2). (2.3.39)

See [15, (1)] for a related expression. As an immediate consequence, we can express

V in terms of a hypergeometric function, as

(2.3.40)

We note that since V, is defined using an integral, the derivative DV, is given by

DV4(0) = wa—1 sin¢™! 0, (2341)
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where the limit for the derivative is defined from the right (above) at 0, and from

the left (below) at .

The following properties of the function v are well known.

Lemma 2.3.16. The function V as defined by (2.3.36) has the following properties:

1.

V is smooth.

2. V is monotonic increasing in (0,7).
3. V(0) =0 and V is positive on (0, ).
4.
5

. For 0,h>0 and 6+ h € [0,7/2],

DV 1s positive and monotonic increasing i (0,7/2).

V(0 + h) —V(0) € h[DV(6),DV(6 + h)]. (2.3.42)

For 6,h >0, where 0 <0+ h < 7/2,

V(0) + V(h) < V(0 + h). (2.3.43)

For 0 € 0,7,

DV(6) = DV(r — 0).

For 0 € 0,7,

V(0)+ V(r —0) = wq. (2.3.44)

The spherical radius of a cap of given area.

To determine the spherical radius # of a cap of area v we need to solve the

equation

Vi(0) = v.
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By Lemma 2.3.16, V,; is a smooth non-negative monotonic increasing function

of 9, with V;(0) = 0. It therefore has an inverse, which we will call ©,. We then have

@d(vd(e)) =4, for #e [O,?T],

Va(O()) =v, for wve0,wy (2.3.45)
Lemma 2.3.17. The function ©, satisfies
04(v) + Oy4(wg — v) = . (2.3.46)

For brevity, the notation used in the remainder of this thesis usually omits the
explicit dependence of V and © on d, ie. we will write V(¢) for the area of a spherical

cap of spherical radius 6.

Estimates.
In the estimates below we assume that 6 € (0,¢], € € (0,7/2].
From (2.3.41) we have DV(0) = wy_1sin®"' 9. Using the estimate (2.2.6) therefore

gives us
DV(0) € [(sinc &)™, 1] wg16097",
SO
V(9) € [(sinc €)1, 1] %ed. (2.3.47)

If we then substitute ©(v) for 6, we obtain for v € [0, V(¢)],

O(v) € [1, (sinc €)'7] ( d >év}i. (2.3.48)

Wd-1

The estimates (2.3.47) and (2.3.48) are crude. There are instances where we

need a sharper upper bound than that given by (2.3.47). The upper bound (2.3.47)
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is loose away from 6 = 0, especially for large d. Other estimates, eg. the estimate

given by [57, Corollary 3.1 p. 467,

. d
V() < —2a_sn0 for o< (0.7), (2.3.49)

are more accurate for large d for § away from 7/2. See also [140, V. pp. 623-624].

The estimate below is as simple as that of [57] and is tighter for d > 2.

Lemma 2.3.18. Ford>2 and 0 € [0,7/2) we have

. d
Wg—1 sin® @
V(o) < S (2.3.50)

with equality only when 6 = 0.
If we combine (2.3.47) with (2.3.50) we obtain

Corollary 2.3.19. Ford>2 and 6 € [0,7/2) we have

sin? 6. (2.3.51)

V(G)e[ L1 ]“’d—l

sincf’ cosf| d

The following estimate can be used to prove that (2.3.50) is tighter than (2.3.49)

when d > 2.

Lemma 2.3.20. For d > 2 we have

Wa_ o\ [2m (2.3.52)

Wa—1 d

The following related estimates are also used in this thesis.

Lemma 2.3.21. For R (0,T], T € (0,2] the normalized area

Vpa(R) = Y2 (2.3.53)

Wd
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can be estimated by

* Rd
Ve.a(R) € [Cpa(T), Cu.a) e

where

and

1 d—1
d \d
Wd—1 (( > + 1) > 1.
Wd-1

2.4 Partitions, diameter of a region

Partitions.

29

(2.3.54)

(2.3.55)

(2.3.56)

(2.3.57)

(2.3.58)

For the purposes of this thesis, we define an equal area partition of S? in the

following way.

Definition 2.4.1. An equal area partition of S¢ is a nmonempty finite set P of

regions, which are closed Lebesque measurable subsets of ST such that

1. the regions cover S¢, that is

U R =S%

ReP
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2. the regions have equal area, with the Lebesque area measure o of each R € P

being

where |P| denotes the cardinality of P; and
3. the boundary of each region has area measure zero, that is, for each R € P,
c(0R) = 0.
Note that conditions 1 and 2 above imply that the intersection of any two regions
of P has measure zero. This in turn implies that any two regions of P are either
disjoint or only have boundary points in common. Condition 3 excludes pathological

cases which are not of interest in this thesis.

Diameter of a region.

We also consider the Euclidean diameter of each region, defined as follows.

Definition 2.4.2. The diameter of a region R € S ¢ RI*! is

diamR :=sup{||x —y| | x,y € R}.

The following definition is used in Chapters 3 and 5.

Definition 2.4.3. A set Z of partitions of S¢ is said to be diameter-bounded with

diameter bound K € R, if for all P € Z, for each R € P,

1
d

diamR < K |P|

2.5 Jacobi polynomials

For a, 8 > —1, the Jacobi polynomials P{*? are a sequence of polynomials which are

orthogonal on the interval [-1,1] with weight function

w @ (z) ;= (1 —2)* (1+2)°, (2.5.1)
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that is, orthogonal with respect to the inner product

o = [ F@a@y® (a) da. (25.2)

They are obtained by applying the Gram-Schmidt orthogonalization process to the

monomials =" [148, Section 2.1, 2.2], and normalized by defining

o, _(n+a\  T+a+l)  (a+1),
p7(l 5)(1) = ( N ) - Tt DTt 1) = p . (253)

(148, (4.1.1), p. 58]. The last expression above uses the Pochhammer’s shifted

factorial [4, p. 2],

@ = [Ja k) =" gy,

Here and below, we also use the normalized Jacobi polynomials P{** defined

by

B ()
Bles) () = m, (2.5.4)

2.6 Reproducing kernel Hilbert spaces and polynomial spaces

Hilbert spaces.

A Banach space is a normed linear space which is complete, that is every Cauchy
sequence in the norm converges in the space. A Hilbert space is a Banach space
where the norm |-|| is defined by an inner product (,), such that for a complex
Hilbert space, |z||* = (z, ), and for a real Hilbert space, |z|° = (z,z).

This thesis sometimes deals with real Hilbert spaces of functions on S¢, notably

L?(S?) with normalized inner product

()= [ £G0aG0) (), (2.6.1)
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where

G=b4:= 22 (2.6.2)

Certain finite dimensional Hilbert spaces are also defined and used below.

Kernels.

In this thesis, a kernel ¢ is a function from S¢ x S¢ to R, which is possibly
undefined on a set of measure zero.

This thesis usually deals with kernels which are a function of Euclidean or spher-
ical distance, eg. given u : (0,2] — R we could have ¢(x,y) = u(||x —y|); given
f:[-1,1) - R we could have ¢(x,y) = f(x-y).

Remarks. Landkof [93, Chapter I, 1, p. 43| uses the term M. Riesz
kernel to describe certain functions & : R4*! — R such that k(x) := u(||x]|)
where u : R+ — R. This thesis does not use the term “kernel” in this

sense.

Reproducing kernel Hilbert spaces.

A reproducing kernel Hilbert space is a Hilbert space which is associated with
a reproducing kernel. For kernel ¢ and x € S, define ¢, by ¢x(y) := ¢(x,y). Then ¢
is a reproducing kernel for a Hilbert space H of real functions on S¢ if and only if
bx € H and (¢y, f) = f(x) for all x € S? and all f € H.

Thus for a reproducing kernel we also have

6]1” := (. %) (2.6.3)

for all x € §4.

Polynomial spaces on the unit sphere.

The notation used here parallels that of [124], [142] and [74].



2.6. Reproducing kernel Hilbert spaces and polynomial spaces 33
We use P([-1,1]) to denote the real polynomials restricted to the interval [-1,1]
and for any polynomial p € P([-1,1]) we define p to be the normalized polynomial
p/p(1).
We use P,(S%) to denote the real polynomials on R4+, of homogeneous degree ¢,
restricted to S?. This space is known [124, (4.1)] to have dimension

D(d, 1) = dim B,(S%) = (t ’ d). (2.6.4)

We use P;(S?) to denote the real polynomials on R¥*! of maximum total degree

t, restricted to S?. This space is known [124, (4.4)] to have dimension

D(d,t) := dim Py(S?) = (tzd> n (HZ— 1) _ (2t d)t(!t;d— 1)! (2.6.5)
= %t%d (d+ 1)1 = 21; d (t+1)g-1, (2.6.6)

and is known [124, (4.31)] to be a reproducing kernel Hilbert space with inner

product

()= [ S0a(y) doty) (2.6.7)

d+1)( d+1)

and reproducing kernel & x,y) = ®\"™(x-y), where the kernel polynomial @

is defined by

2 (d+ 1)1 (4.4-
q)gd+1) — % pt(g’g b (2.6.8)

that is

for all f € Py(S?), z € S.
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Remarks. Note that the kernel polynomial is defined on [-1,1], but the
kernel itself is defined on S? x S?. It should be clear from the context

which function is meant.

Using (2.5.3) and (2.6.6) we have

D(d, 1)

@)y 2 ([d+De (§+1): 1 2t+d B
2= wi ($41)y t1  wa (@4 Do = wa (2:6.9)
and therefore, using (2.5.4), we have
a) = DILD) pgn (2.6.10)

Wd

2.7 Separation and packing

By the minimum distance between points of a code X c S we mean the minimum

Euclidean distance, defined as follows.

Definition 2.7.1.
mindist(X) := min{||x —y|| | x,y € X,x #y}. (2.7.1)

The problem of maximizing the minimum distance between points of a spherical
code is called the Tammes problem, after the botanist Pieter Merkus Lambertus
Tammes, who studied the problem in his investigation into the arrangement of

pores on pollen grains [150, Chapter 3, Section 1, pp. 62-71].

Well separated sequences of spherical codes.

Definition 2.7.2. We say that a sequence X of S¢ codes is well separated if there

15 a constant Ca such that for all X, € X,
mindist(X,) > CA/\/[_%,

where Ny = | Xy|.
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If we use spherical rather than Euclidean distance in Definition 2.7.2, we obtain

an equivalent definition, but the separation constant may be different.

Packing radius.
The packing radius prad X of a code X ¢ S¢ is the half the minimum spherical

distance between codepoints of X.

Y- (mindist X)

dX .=
pra 5

(2.7.2)

This is the maximum spherical radius p such that no two spherical caps of the

set {S(x,p) | x € X} have an intersection with positive area.

Definition 2.7.3. A saturated packing of packing radius p is a packing of spherical
caps of packing radius p such that another cap cannot be added without moving the
existing caps.

We can create a saturated packing of spherical caps with packing radius p by
using a greedy algorithm. Place the first cap anywhere. Once i caps have been
placed, let x;,1 be a point of S¢ which is at spherical distance p from the union of
the & caps. If there is no such point, let /' :=i and we are done. Otherwise let cap
i+ 1 have the centre x;,;.

Once we have finished the greedy algorithm, we see that no point of §? is more
than 2p from the centre of a cap, otherwise we could have added another cap of
spherical radius p to the packing, continuing the greedy algorithm [164, p. 1091]
[165, Lemma 1, p. 2112]. We therefore have the following result.

Lemma 2.7.4. The centre points of a saturated packing of spherical caps on S¢
with packing radius p are the centre points of a covering of spherical caps on S?

with spherical radius 2p. That s, if X is the spherical code whose codepoints are the
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centres of the packing caps, then

U S(x,2p) D S (2.7.3)

xeX

Packing density.
Definition 2.7.5. The packing density pdens X of a spherical code X c S is the

ratio of area of the union of packing caps to the area of S¢, that is

pdens X := | X| M. (2.7.4)
d

Voronoi cells.

Given a spherical code X c S, the Voronoi cell V, corresponding to codepoint
x € X consists of those points of S which are at least as close to the codepoint x
as they are to of any of the other codepoints of X [43] [44, Vol I, pp. 37, 41] [35,
‘Dirichlet regions’ p. 263] [17, ‘Dirichlet-Voronoi cells’ pp. 243-244].

2.7.1 Bounds

There are a number of bounds associated with spherical codes and the packing of
spherical caps on S?. The bounds can be expressed in a number of ways.

For a given number of codepoints in a packing, there are lower and upper bounds
on the maximum packing radius and equivalently, lower and upper bounds on the
maximum of the minimum Euclidean separation.

For a given packing radius or minimum Euclidean separation there are lower
and upper bounds on the maximum number of codepoints in a packing.

Perhaps the simplest way to express these bounds is as bounds on the packing
density as a function of packing radius, minimum Euclidean separation or number

of codepoints.
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We therefore define the maximum density function for spherical codes as

maxpdens(d, p) := max {pdens X C S¢ | prad X = p}. (2.7.5)

To allow easier comparison with many of the bounds quoted in the literature,
we also define A(d+1,A?) to be the largest size of a S? code with minimum distance

at least A [50, Section 1.3]. More formally,

A(d+1,A%) = max {|X| | X C S, mindist X > A}. (2.7.6)

The Chabauty-Shannon-Wyner lower bound.

The current situation for general lower bounds is considerably simpler than that
for upper bounds.

The Chabauty-Shannon-Wyner (CSW) lower bound on packing density is based
on the observation that for a packing to have maximum density for a given packing
radius p, the packing must be saturated for that radius. Lemma 2.7.4 then tells us

that the corresponding caps of radius 2p cover §? and so we must have

maxpdens(d, p) > Val) . (2.7.7)

See also [50, Theorem 1.6.2, pp. 21-22].

For p € (0, %) the estimate (2.3.51) then gives us

cos(2p) sin?p
sincp sin?(2p)

maxpdens(d, p) >

cos(2p)

>271 > 274 cos(2p). (2.7.8)

sincp cost p

There are many specific constructions which supersede the CSW lower bound

[50, p. 22]. For example, the apple peeling codes of el Gamal et al. [49, p. 122]
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beat the CSW lower bound for at least $? [66, Lemma 3], and the wrapped spherical
codes of Hamkins and Zeger [65, 66] beat the CSW lower bound in general.
In fact, any saturated packing on S¢ with more than 2 codepoints must do better

than the CSW lower bound, because the covering caps of Lemma 2.7.4 must overlap.

Definition 2.7.6. For the purposes of this thesis, we define the Wyner ratio of a
spherical code X to be the ratio of the packing density pdens X to the CSW lower

bound corresponding to the packing radius prad X.

Thus if the Wyner ratio of the code X is less than 1, then X does not corre-
spond to a saturated packing, and X can in some sense be considered to be “poorly
packed”. A Wyner ratio of more than 1 does not necessarily mean that the corre-

sponding packing is saturated.

Upper bounds.

Over time, the upper bounds on the maximum packing density have increased in
tightness, sophistication and complexity. We have just used the naive packing bound
which simply says that the packing density is at most 1. The packing arguments
used in this thesis rely on this simple bound.

Below we briefly mention the more sophisticated bounds. More detailed discus-
sion of these bounds is beyond the scope of this thesis. For some deeper overviews,
more details and further references, see [65, Chapter 3|, [66, Section I1], [34, Chapter
1, Section 2], [50, Chapters 1 to 3], [19, Chapters 2 and 3].

The Rankin bounds.
For A € (v2,2], Rankin’s first and second bounds [121, Theorem 1 (ii), (iii), p.
139] [34, Chapter 1, (59, 60), p. 27] [50, Section 1.4] state that

. A?
A(d+1,A%) < min QMJ ,d+ 2) ) (2.7.9)

When A%—iz = d+2 we have A? = 2222, The spherical code with d + 2 codepoints

on §* with a squared minimum distance of 24+2 consists of the vertices of a regu-
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lar spherical simplex, one of the Platonic solids of R¢t. For §2%, this is a regular
tetrahedron [34, Chapter 1, p. 27] [50, Section 1.5, p. 18].
Rankin’s third bound [121, Theorem 1 (iv), p. 139] [34, Chapter 1, (61), p. 27]

[50, Section 1.4] states that
A(d+1,2) < 2d + 2. (2.7.10)

A minimum distance of v2 corresponds to a packing radius of Z. The spherical
code with 2d + 2 codepoints on S¢ with packing radius 7 consists of the vertices of
a regular cross polytope, another of the Platonic solids of R¥*!. For §2; this is a
regular octahedron [34, Chapter 1, p. 27] [50, Section 1.5, pp. 18-19].

Rankin’s paper also includes a theorem [121, Theorem 2, p. 193] which gives
a relatively simple bound on A(d + 1,A?) for A < v/2. This bound has been largely

superseded by the more elaborate bounds mentioned below.

The linear programming bounds.
The linear programming bound is expressed via the following theorem which

follows from [42, Theorem 4.3, p. 368].

Theorem 2.7.7. Given A € (0,2), let s :=1— %2. Let f be a real polynomial such

that
1. f(z) <0 for z € [-1,s] and

2. the coefficients in the Gegenbauer expansion

t
fa) =Y hBETE ()

k=0

satisfy fo >0 and fr >0 for k> 0.

Then

A(d+1,47) < L), (2.7.11)
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The Levenstein bound [50, Section 2.5] [19, Section 2.5.1, pp. 18-19] is a mod-
erately complicated bound which uses a sequence of polynomials which satisfy the
linear programming criteria.

The Boyvalenkov-Danev-Boumova bound [21] [19, Section 3.7, pp. 57-61] [50,
Section 2.6] improves on the Levenstein bound by using polynomials of higher de-
gree.

The Pfender bound [118, Theorem 1.1, p2; Table 2, p. 14] improves on the linear
programming bound by enlarging the function space.

The Samorodnitsky bound [136, Proposition 1.1, Corollary 1.3, p. 387] is a lower
bound on the linear programming bound, which gives an indication of how much

improvement may be possible with bounds of this type.

The simplex bound.
If X is a S? code with |X| > 2 and with minimum Euclidean distance A, consider
a regular spherical simplex T with the common Euclidean distance between the

vertices being A. Enclose each of the d + 1 vertices of T in a spherical cap of

TH(A)

spherical radius prad X = ~—

. Then the Fejes Téth-Coxeter-Boroczky (simplex)

bound [50, Sections 3.4, 3.6] [18, Corollary 6.4.2, p. 182] says that the packing
density of X does not exceed the ratio of the area of the portion of the d + 1 caps
which lie inside T to the area of T. This ratio is given by a rather complicated
formula involving Schlafli functions, which is not repeated here because this bound
is not used in this thesis.

The simplex bound was proved by Fejes T6th [55] for S2, and conjectured by
Coxeter [36] and proved by Boroczky [17] for s¢ for d > 2.

This bound is asymptotically related to the Rogers bound [131]. See [65, Lemma
3.3, p. 31] for details.

The packing of small spherical caps in a larger cap.
In this thesis we consider bounds on the number of codepoints of a spherical

code lying within a spherical cap. In order to do this we need bounds on the packing
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density of equal spherical caps within a larger cap. For the purposes of this thesis,
we use the naive upper bound of packing density 1. This is sufficient to prove the
theorems included in this thesis.
For the sake of completeness, we mention here that there are tighter and more
sophisticated bounds on the number of equal spherical caps within a larger cap.
Boroezky [18, Theorem 4.4.2, Corollary 4.4.3, p. 114] proves that for §?, the
simplex bound applies to the case of two or more equal spherical caps of spherical

radius less then Z within a larger cap, giving a density less than - within the

5

larger cap.

Bezdek, Cohn and Radin [8, Theorem 8.3, p. 9] states that for S?, the density
of two or more equal spherical caps within a larger cap of spherical radius less than
Z is less than the Roger’s upper bound of 0.77963..., and conjecture [8, Conjecture
8.2, p. 9] that the bound can be improved to = = 0.74048 ...

In the general case of S, the recent paper of Barg and Musin [5] can be used to
find many improved bounds on the packing density of small spherical caps within

a larger cap. See especially [5, Corollary 3.4, Theorem 6.1, Corollary 8.2].

Bound on the number of codepoints within a spherical cap.

Lemma 2.7.8. Let X be a spherical code with minimum Euclidean distance mindist X
as per Definition 2.7.1, and choose A € (0, mindist X].

For x € X define the counting function
g(R) :=|X NSg(x,R)|. (2.7.12)
Then

g(R) <

Ve(R+ A) _ g Cra <R+A)d

Ve (d) 0 Ca®\ A (2.7.13)
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and

¢ Cuwa [R\
g(R) < 4 Crall) (A) +1. (2.7.14)

2.8 Communications theory and spherical codes

The multivariate standard Normal distribution Ny.4(0,1) in R¥*! has the probability

density function [10, (29.6), p. 383-384]

Nui1(0,1)(x) == (21)" % exp e :df[l— exp (m’%> (2.8.1)
’ 2 k=1 V2r 2

In other words, it is the product of d+1 independent standard Normal distributions.

This distribution has the property that the probability distribution function is
dependent only on the Euclidean distance from the origin. It can therefore be split
into a radial component and an angular component, where the angular component
is the uniform distribution over the sphere §? [139, Section VII].

Shannon’s model of communication [138, 139] includes a source, a message en-
coder, a channel encoder, a channel, a channel decoder, a message decoder and
a receiver. The source may be discrete or continuous, but efficient communication
between the source and the channel encoder usually demands a discrete source code.

Gaussian source coding begins with a source which is a random R?*! variable
with a multivariate standard Normal distribution. It involves the creation of a
source code which is a finite set of points of R4, and an algorithm which maps
R+ to the code in such a way as to try to minimize the expected error between
the source signal and the image of the map, given the number of points [68].

Since the angular and radial components of the code are separable, it is possible
to code these separately. The encoding of the angular component can be treated

as the encoding of the uniform distribution over the sphere S¢ into a spherical
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code. This type of encoding is also known as spherical quantization [65, Chapter 6]
(68, 77, 78, 156, 105].

As well as being a possible component of Gaussian source coding, spherical
quantization is studied for its own sake and for its application to purely angular

sources.

Gaussian channel.

In Shannon’s model of communication [138, 139] the codes used by the message
encoder and the channel encoder are separate and can be optimized independently
to match the communication environment. Shannon’s Gaussian channel model has
a signal which is a point of R a transmitter which is limited in power, which
is proportional to distance of the point from the origin, and a channel which adds
Gaussian noise, that is noise with an uncorrelated multivariate Normal distribution
with zero mean [139, Section VII] [140, Section I, Section VI (29)].

The power limitation means that the signal is essentially limited to a ball centred
on the origin. If the transmitted signal is uniformly distributed over the unit ball
in R then the expected radius of the signal point approaches 1 as d — oo [139,
Section VII]. The transmitted signal can therefore be treated as a point on the

sphere S9.

Spherical coding and decoding.

In Shannon’s Gaussian channel model, the channel encoder takes a message and
converts it into a sequence of codepoints, the channel adds Gaussian noise and the
channel decoder attempts to map each point of the received signal back into the
finite set of codepoints. Because of the noise, there is a non-zero probability that a
received signal point will be mapped to the wrong codepoint [140, Section IJ.

In Shannon’s Gaussian channel model, the codepoints of a spherical code are
chosen to maximize the transmission rate at a given arbitrarily small error rate.
The number of bits per point transmitted is log, N, where N is the number of points

of the code.
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In the usual spherical decoding algorithm, a received signal point is mapped to
the nearest codepoint. This is called mazimum likelihood decoding. In this case,
the probability of error is the probability that a received signal point lies outside
the Dirichlet-Voronoi cell of the transmitted codepoint [140, Sections I, I1I].

As the noise level increases, so does the spherical radius containing a given
proportion of random noise vectors. To keep the error rate low, the minimum radius
of each Dirichlet-Voronoi cell corresponding to the spherical code must increase as
well. In other words, the packing radius must increase. A larger packing radius
ultimately means a smaller number of points, but a given number of points can
be arranged to maximize the packing radius [49, Section II|. Thus the study of
spherical codes in communication and coding theory is related to the study of the
packing of spherical caps on S%.

As well as efficient coding schemes, spherical coding and decoding is concerned
with efficient decoding algorithms. Since spherical decoding and spherical quanti-
zation are related, an efficient spherical decoding algorithm often provides the basis
for an efficient spherical quantization algorithm.

Spherical decoding differs from spherical quantization in that the signal received
by the channel decoder usually does not have a uniform distribution but is concen-
trated towards the points of the spherical code in such a way as to try to minimize
the probability that received signal point will be mapped to the wrong codepoint.

The naive version of the usual spherical decoding algorithm maps a received
signal point to the nearest codepoint by determining the distance to each of the &
codepoints. Since the number of bits per codepoint is only log,(N) the performance
of the naive algorithm is unacceptable. It is preferable to use an algorithm where
the effort to decode a received signal point is only O (log(N)) rather than O(W). [50,

Section 11.2, pp. 390-391].
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2.9 Quadrature

2.9.1 Positive weight quadrature

A quadrature rule Q = (X,W) on S¢ of strength t and cardinality N is a linear
functional on the set of real-valued functions on S¢, (S¢ — R) which is defined by
a sequence X of N quadrature points (xi,...,xx) on S¢ and a sequence W of N

corresponding real quadrature weights (wy,...,wx), as follows

N
Q f:=> wi f(xx),

k=1

such that, for all p € P;(S%),

Qp= /SdP(Y) do(y).

A positive weight quadrature rule has all weights positive.
Recent papers which involve positive weight quadrature on the sphere include

108, 169, 41, 25, 75, 113, 101].

2.9.2 Spherical designs

A spherical t-design on S¢ is an equal weight quadrature rule of strength ¢. There

are many equivalent definitions of spherical designs [42, Definition 5.1, p. 371] [103,

Definition 4.1, p. 340] [137] [19, Section 2.7, pp. 24-26] [144, 11, pp. 253-254].
Since a spherical t-design has a strength t of at least zero, the weight for a N

point ¢-design on S* must be 4. In other words, with this weight, any S code is

at least a spherical O-design. Therefore the generic term spherical design usually

means a spherical ¢t-design with ¢ > 0.

Well separated sequences of spherical designs.

The following remarks paraphrase [73, Section 5].

It has been known since the original paper of Delsarte, et al. [42] that any dis-
joint union of spherical t-designs is a spherical t-design. This leads to the following

classification of spherical ¢t-designs.



46 Chapter 2. Preliminaries

e Compound. A disjoint union of two or more spherical t-designs.

e Degenerate. A quadrature rule of strength ¢ with less than A points, where
each weight is a positive integer multiple of %4, can be considered to be a
degenerate N point spherical ¢+-design with a number of co-incident points.

e Simple. Neither compound nor degenerate.

We can use this classification to examine whether a particular sequence of spher-
ical designs can be well separated as per Definition 2.7.2. We first note that any
sequence of spherical designs with a degenerate member is not well separated.

It is also quite easy to construct an infinite sequence of non-degenerate spherical
designs on S? which is not well separated. This is because a compound spherical
design can have points which are arbitrarily close together.

Given any compound spherical ¢-design, it is easy to construct an infinite se-
quence of spherical t-designs where the number of points remains constant, but the
minimum distance approaches zero. This can be done by rotating one component
of the compound spherical design with respect to the other components, in such a
way that two of the points approach each other. Specific example of starting points
for such a sequence are any compound spherical 1-design consisting of two pairs of
opposite points, and any compound spherical 3-design consisting of the vertices of
two cubes.

Using a similar principle of construction, it is possible to construct an infi-
nite sequence of compound spherical designs, with increasing strength, where the
minimum distance between codepoints decreases arbitrarily rapidly, and which is

therefore not well separated.

2.10 Polynomial interpolation, fundamental systems

The following definitions are based on [162, Sections 1,2] [124, Sections 5.3] but

with notation modified to match this thesis.
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Definition 2.10.1. A fundamental system X of degree t on S¢ is a set of D(d,t)
points on S such that the zero polynomial is the only polynomial of Py(S?) which is
zero at all points of X.

Fundamental systems exist for all degrees and dimensions. For proof, see [124,
Theorem 5.14, pp. 126-127].

Let L=(S?) denote the space of bounded real functions on S? that is those
f:S?— R such that ||f]|. < oco.
Definition 2.10.2. For a given fundamental system X of degree t on S?, the polyno-
mial interpolation operator Ax is a projection which maps L>(S?) to the polynomial
space P,(SY). This operator satisfies Axf(x) = f(x) for all x € X. See also [124,

Definition 5.10, p. 130].

Fundamental spherical designs.

Define a fundamental spherical design to be a fundamental system of degree ¢
which is also a spherical ¢-design as per Section 2.9.2.

For d > 1 it is currently unknown whether spherical t-designs of cardinality P,(S%)
exist for all strengths ¢, let alone whether there are fundamental spherical designs

for all strengths. See Section 5.3 and also [31].

2.11 Energy, weak-star convergence

2.11.1 Weak convergence of measures

Definition 2.11.1. A sequence of measures (vi,vs,...) on a compact metric space

S converges weakly to the measure v if and only if

[ 760 o) = [ 700 dvx)

as £ — oo for all continuous f [9, 11].
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Definition 2.11.2. A spherical code X ¢ S* defines a normalized counting measure

via equal weight quadrature,

XN A
RY

Gx(A): , (2.11.1)

so that

[ 160 i = 57 3 1)

xeX

for all continuous f : S¢ — R, and we can use this as the definition of a linear
functional defined on L>=(S?), the bounded real functions on S?
For a fixed sequence X of spherical codes, we often use the abbreviation &, to

mean ox,.

Definition 2.11.3. We say that the sequence X = (X, ¢ € N) of S codes is weak-star
convergent if the corresponding sequence of normalized counting measures (6x,,¢ €
N) defined by Definition 2.11.2 converges weakly to &, the normalized Lebesgue area

measure on S¢.
A weak-star convergent sequence of codes has the following useful property.

Lemma 2.11.4. If X = (X,,¢ € N) is a weak-star convergent sequence of S codes
then the cardinality of the point sets of X diverges to infinity. That is, for any

cardinality No > 0 there is an index Lo > 0 such that
Ny > Ny for all £ > Ly,

where Ny is the cardinality of X,.

Thus for a given weak-star convergent sequence X of §¢ codes, the function
L(N):=min{L € N|N; >N for all ¢> L} (2.11.2)

is well defined and finite for each N € N.
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2.11.2 Spherical cap discrepancy

Definition 2.11.5. The normalized spherical cap discrepancy of a spherical code is
the supremum over all spherical caps of the difference between the normalized area

of the cap and the proportion of codepoints which lie in the cap. In other words,

disc(X):=  sup lo —ox| S(y,0). (2.11.3)
y€eS4,0e(0,n]
Remarks. This is the normalized spherical cap discrepancy. Most au-
thors use the unnormalized discrepancy [6, Theorem 24D, p. 182] [30,

Section 2.5], which is larger by a factor of |X|.

2.11.3 Weak-star convergence and normalized spherical cap discrepancy

It has long been known that there is a relationship between weak convergence of a
sequence of measures and uniform convergence of the same sequence on a subclass
of sets or a subclass of functions.

A paper by R. Ranga Rao [122] was one of the first systematic expositions of this
relationship. His Theorem 4.1 [122, p. 665] states that given a measure p on Re+!
such that p£~! is continuous for every linear function £ on R¥*! a sequence of mea-
sures converges weakly to p if and only if it converges to u in certain discrepancies
defined on half spaces.

This theorem can be used to show that a sequence of S? codes is weak-star
convergent if and only if it is convergent to zero in normalized spherical cap dis-
crepancy.

Lemma 2.11.6. A sequence X of S¢ codes is weak-star convergent if and only if the

corresponding sequence of normalized spherical cap discrepancies converges to zero.

Remarks.
Lemma 2.11.6 is well known. Brauchart proves it in another way in his
Diplomarbeit [23], by appealing to Grabner’s [63] Erdos-Turan inequal-

ity on the sphere.
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Damelin and Grabner [39, Remark 4, p. 236] use the term asymptot-
ically equidistributed to describe a sequence of spherical codes whose
corresponding sequence of normalized spherical cap discrepancies con-
verges to zero. Thus Lemma 2.11.6 can be restated as: “A sequence of
spherical codes is weak-star convergent if and only if it is asymptoti-
cally equidistributed”. In the remainder of this thesis, we use these two
equivalent properties interchangeably.

Billingsley and Topsge [12] generalized and extended the results of Ranga
Rao. See especially Theorem 2, [12, p. 2].

The theory of the relationship between weak convergence and uniform
convergence is not restricted to the sphere or even to finite dimensional
manifolds. Both [122] and [12] treat measures on separable metric spaces
in general, and applications include laws of large numbers and Glivenko-
Cantelli theory [122, p660].

Kuipers and Niederreiter prove Lemma 2.11.6 in the restricted case
where the sequence of S? codes is taken from a sequence of points on S¢
by adding one point at a time, but do so in the more general context
of compact spaces and continuity sets. See [90, Theorem 1.2, Example
1.3, p. 175].

Dudley’s book on uniform central limit theorems [46] contains a chapter
on Vapnik-Cernovenkis (V-C) combinatorics. In particular, the example
[46, Section 4.2 Example I, p. 140] uses the polynomials of degree at
most k& on R? to create a V-C class which contains all ellipsoids in R9.
This can be used as a basis for an example on S9.

Let L be the space of polynomials of degree at most 1 on R¥*!, restricted
to S¢, ie. the linear functions. L is a vector space of dimension d + 2,
and so pos(L) is a V-C class. But pos(L) is just the set of all (open)

spherical caps. Also, by [46, Theorem 4.2.1, p. 139], since L contains
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the constants, we have (using Dudley’s notation [46, Section 4.2])
S(pos(L)) = S(un(L)) = S(U(L)) = d + 2.

Dudley’s notes [46, Section 4.2, p. 167] say that Theorem 4.2.1 in the
case of linear function on R™ and f = 0 is known as Radon’s theorem,

so the equivalent for S¢ could be called Radon’s theorem on the sphere.

2.11.4 Energy functionals

For a measure v on the compact metric space S and a point x € S, define the

punctured measure v|x] by

v[x](A) = v (A\ {x})

for all measurable A ¢ S. Then, for example, for the S¢ code X, with A, points, and

the point x,; € X,, we have

N
[0 doxcfueal¥) = 573 stxes) (211.4)
J#k
for all functions f which are defined at the points of evaluation. Later, when we
discuss the weak-star convergence of sequences of punctured counting measures such
as ox,[xex], we will need to restrict the associated linear functional (2.11.4) to the
space of continuous functions on S¢.

Given a potential, usually a decreasing function of distance, we can define the
energy of a spherical code. For example, the Riesz s energy is defined using the
Riesz r—* potential [39, 24].

Definition 2.11.7. For a measure v defined on S, for a real potential u defined on

[0,2] define

1) = [ [ ullx=yl) anty) ant)
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and for a real potential u defined on (0,2] define

Bw) wi= [ [ allx=yl) dvlx(y) vt

For the normalized Lebesque area measure ¢ defined on ST we define the abbre-

mations

For the normalized counting measure ¢x, defined by (2.11.1) for a sequence

X = (X,0 €N)) on S, we define the abbreviations
Zo(X) =I(X,),:=Z(0x,), EoX):=E(X) :=E(ox,).
The Riesz potential for the exponent s is
Us(r):=7"7° 0<s<d.

For s > 0, since U,(r) diverges to +oo as r — 0, we extend the definition of U, to [0,2],
by setting U4(0) := +oc.

For a sequence of codes X on S¢, we therefore have

zuS:/ / Ix —yl|™* dé(x) do(y) (2.11.5)
sd Jd
and
| NN
E((X)Us = WZZ Hxé,k —X&j”_s. (2116)
£ g=1j=1
J#k

It is well known that for 0 < s < d an increasing sequence of minimal s energy
S¢ codes is asymptotically equidistributed [39, p. 236]. The result in terms of weak

star convergence goes back at least as far as Landkof [93, Chapter II, Section 1.1,
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pp. 131-133, Section 3.12, p. 160-162]. See also Frostman [61, Section 25, pp.
46-48, Section 3, pp. 12-16]. For d—1 < s < d such a sequence is also well separated
[89]. This also holds for s =d -2 when d > 3 [40, Theorem 3.5, p. 853].

The problem of minimizing the Coulomb (Riesz 1) energy of a §? code is called
the Thomson problem, after the physicist Joseph John Thomson, who studied a
related but different arrangement of point charges in one of his investigations into
atomic structure [155, p. 255].

We now list a few results on integrals related to energy functionals, all of which

are well known.

Lemma 2.11.8. For R € (0,2] and any x € S, for any potential u : (0,2] — R, the

single integral

TabsiByu= [ ullx—yl) doy) (211.7)
Ix—yll<R
can be evaluated by
w R 7"2 %—1
Jix;R) u=Ju(R) u:= dil/ u(r) ré=t (1 - ) dr, (2.11.8)
Wy 0 4

which 1s independent of x.

Corollary 2.11.9. For any potential u u : (0,2] — R, the double integral
Tu= [ [ ullx=yl) doty) @i
can be evaluated by
Tu=JT42) u,

where J, is defined by (2.11.8).
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Corollary 2.11.10. For s € (0,d), R (0,T], T € (0,2] and any x € S, the integral

Ta(x: R)U, = / Ix -y~ do(y)

lx—yll<R

can be evaluated by

R 2
Jalx R)U, = Ja(R)U, = == / e <1 - ) dr,
0

and can be estimated by

Rdfs
d—s’

Ja(R) Us € [CL.a(T),Cr.a)

where Cr 4 and Cy 4 are defined by (2.5.55).

2.12 Proofs of lemmas

2.12.1 Trigonometric functions and the Gamma function

Proof of Lemma 2.2.1.

For 0,4 € R we have, by the well known addition formulae,

(2.11.9)

(2.11.10)

(2.11.11)

sin(f + ¢) —sinf = sin¢ cosf + cos¢ sinf —sinf =sing cosh + (cos¢p — 1) siné

=2 sin% cos% cosf — 2 sinzg sin 0

=2 sin? cos? cosﬁfsin? sin 6
2 2 2

=2 sin% cos<9—|—(2b>.

Therefore for ¢ € (0,7], 6 € (0,7/2 — ¢/2] we have sin(f + ¢) > sind > 0.
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Proof of Lemma 2.2.3.

The result follows from [4, Corollary 1.2.6, Theorem 1.2.7, p. 13]. Following [4,
p. 13], within this proof we use the notation

Y(x) = % log'(x).

By [4, (1.2.16)] and [2, 6.3.3] we have

1
P <2> =—v—2log2=-1.96351....

By [4, (1.2.16)] we therefore have

3
o (3

):2—'y—210g2:2—1.96351...:0.0036...>0

3

We could have used [2, 6.3.4] directly to obtain the same result.
For the general case z >

(2.2.10).

we use the log-convexity of the Gamma function

O
Proof of Lemma 2.2.4.

We treat the case z =1 first. From (2.2.8) we see that this gives equality.
The more general case follows from (2.2.7), (2.2.9) and the Legendre duplication
formula (2.2.11).

These give us

22w—1 22x—2
I'(2z) = NG ['(x) F(x+2>:§F(§) I'(x) F<x+2>
I (z+ 3
=471 ; é)2) [(x) > 4" T(x)

for = > 1, where the final inequality results from (2.2.12).
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Proof of Lemma 2.2.5.

The result follows from the log-convexity of the Gamma function (2.2.10), since

Pz +1) T (z+3)
L(z+3) T()

Tr =

with the log-convexity giving us

Proof of Lemma 2.2.6.
From (2.2.8) and the log-convexity of the Gamma function (2.2.10), we have
logT'(1) = logT'(2) = 0 and log'(z + 1) < 0 for z € (0,1).

Using (2.2.7), we also have

log(z +1)* =xlog(z+1) >0 for z > 0.

Therefore T'(x + 1) < (z + 1)* for z € (0,1], and so

Nz+1)=2l(x) <z 2" =2 foraze (1,2

If we have z such that T'(z + 1) < 2* then

INz+2)=(@x+DT(z+1) < (x+1) 2 < (z+1)"T

Therefore by induction, I'(z + 1) < 2® for > 1. Finally, I'(1 + 1) = 1% O

2.12.2 The geometry of the unit sphere S¢

Euclidean and spherical distances

Proof of Lemma 2.3.2.

These results are well known, but we include a proof for completeness. In order,
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. For a proof for §? using the Frenet equation, see [115, Example 5.8, pp. 228

229]. For an elementary proof for §? using stereographic projection, see [102].

. The result is a consequence of property 1 and the length-minimizing properties

of geodesics. For a proof for 2, see [115, Example 5.7, pp. 346-347].

. It is well known that any two points a,b € S¢ define at least one great circle.

If a# b and a and b are not antipodal, the great circle is unique. If a =b, the
spherical distance and geodesic arc length are both zero. If the two points are
antipodal, the spherical distance and geodesic arc length are both =.

The arc length of an arc of a great circle is the angle at the centre o of the

circle. Up to =, this angle is

Zaob = cos '(a-b) = s(a,b).

See also [115, Example 5.7, pp. 346-347].

. Abbreviating s(a,b) to s and |Ja — b|| to e, we have

e?=a-a—2a-b+b-b=2—2coss,
SO

e=+v2—2coss=T(s).

Using the half angle formula for cos, we also have

e?=2—-2coss=2-2 (COSQE—SiHQ ;) = 2—2cos2§+2sin2§:4sin2;,

SO

s
Y(s) =2sin —.
(s) 81112
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. Using property 4, we see that the function Y is differentiable in [0, 7], with

0 .S s
DT(s):%<2s1n§>—cos§>O when s¢c[0,7).

. We use the addition theorem for the sine function. For «, 3 € (0,7,

o ain (Y 9 win® cosZ 12 sin D) cos®
Y(a+p6)=2 sm( 5 >_2 sin cos2+2 511r12)cos2
<2 sin%+2 sinng(a)—i-T(ﬁ),

since sin ¢ and sin £ are both positive.

The equality when o =0 or 8= 0 occurs because sin(0) = 0.

. For a,b,a+b¢c0,2] apply (2.3.4) with a = Y"(a), 3= Y"(b), to obtain

T (T (a)+ Y1 (b)) <a+b,

which implies that

T (a) + Y1) < Y(a+b),

with equality only when a =0 or b = 0.

. Abbreviating s(a,b) to s and ||a—b]|| to e, and using (2.3.3) and (2.3.2), we

have

.S
6:25111§<s, when s> 0.

. Abbreviating s(a,b) to s and |a—b]| to e, using (2.3.3) and (2.3.2), and ex-

panding in Taylor series, we have

E_T(S)_2Sin§_s—2§—;+..._l 52
s s s s - 22 3!
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Spherical caps, collars, zones and spherical rectilinear regions

Proof of Lemma 2.3.6.

Use stereographic projection from the point —a. The point a projects to the
origin of R2?, the small circle S projects to a circle 98’ and the points e and —e
project to the points ¢ and e” respectively. (The point e is in general not the
centre of the circle 95, but this does not matter for the purposes of this proof.)

The great circle D projects to the line D’ which passes through e’, the origin and
e”’. By symmetry, the line D’ passes through the centre of the circle 95’.

The line D’ intersects 95’ at the points ¢’ and d’. The circle 9S8’ does not have
the origin as its centre, since this would imply that a is either e or —e and we have
excluded this possibility. Therefore the points ¢’ and d’ are at different distances to
the origin.

Let us take d’ to be the closer of these two points to the origin. The point d’
is the image under stereographic projection of the point d which is one of the two
points of intersection of S and D.

Now consider the circle ¢’ about the origin with radius ||d’|. The circle C’ is
tangent to 05’ at d’ because the line D’ passes through the origin, d’ and the centre
of 95’ [32, Proposition 84.1, p. 105].

The preimage of ¢’ under stereographic projection is a small circle ¢ which is
the boundary of the spherical cap S(a,s(a,d)). This cap contains no point of 95 other
than d. Thus d is the unique point of 95 which is closest to a.

A similar argument shows that c is the unique point of 8 which is furthest from

a. O

Proof of Lemma 2.3.7.

Consider the embedding of S% in R¢+!. The poles of S and the point a define
a 2-plane U, which intersects S? in a great circle C, which contains the meridian
®(a) and the poles. Since the point q is not on C,, it does not lie in the 2-plane Us,.

Therefore ©(a) and q define a 3 dimensional subspace T'(a, q) of R?. In this subspace,
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®(a) and q lie on a unit 2-sphere, which we have called G(a, q). Since G(a,q) contains
Ca which contains the meridian ¢(a) it therefore contains the poles of §? and the
point ITa.

The subspace T'(a,q) also contains the 2-plane U, defined by the poles of S* and
the point q. The 2-plane U, intersects S? in the great circle C, which contains the
poles and the point q. Since U, is a subspace of T(a,q) we must have Cq C G(a,q).
This implies that G(a,q) contains the meridian ©(q) and the point Il q.

Any point x € G(a,q) is also a point of §¢. The point x and the poles define a
2-plane U, which contains the great circle Cx c S¢ which contains the meridian 0(x).
The meridian ©(x) is evidently contained in G(a,q) and within G(a,q) is an arc of a
great circle between the poles extending from the North pole to the South pole but
not including either pole.

The points ITa and IIq are each at spherical distance 7 from both of the poles
of S and so they both lie on the equator of G(a,q).

The equator of G(a,q) is the equatorial image of G(a,q) within G(a,q), that is
the set of points {(z1,...,24-1,%) | x € G(a,q)}.

Finally, every point of 1 G(a, q) is at spherical distance z from both of the poles

of S and therefore lies on the equator of G(a,q). O

Proof of Lemma 2.3.8.

It is easy to see that

(X NG(a,q) COXNIG(a,q).

If x € X NG(a,q) then x € X and x € G(a, q), so ITx € I X N1 G(a, q).
Now suppose that y € I X N Hé(a, q). Therefore there exist x € X, g € é(a, q)

such that

y=Mx=1Ig.



2.12. Proofs of lemmas 61

Therefore x and g lie on the same meridian. But o(g) € I G(a, q) and x € O(x) = O(g).

Therefore x € X N G(a, q), and therefore

o

y €II(X NG(a,q)).

Proof of Lemma 2.3.9.

Let C = S(a,®). Note that since C' c §2, the spherical cap C does not contain
either pole, and therefore every point of C has a meridian passing through it. Each
meridian through a point of C also passes through 9(C) and therefore ToC =11 C.

Since C' does not contain either pole, we must have ® < 3. Therefore every point
of C has longitude between a; — Z and oy + % (mod 27).

We now note that two there are two meridians tangential to C, to the west and
east of a. Denote by w the point of tangency with longitude less than a, and denote
by e the point of tangency with longitude more than a (mod 2r).

The corresponding meridians are ©(w) and @(e). Since a is the centre of C, we
can use reflection symmetry through the meridian ©(a) to show that o(w) and o(e)
make equal angles with @(a). Call the North pole O and define the angle ¢ := ZwOa.
Then ZaOe = ¢.

Thus the meridian ©(w) meets the equator at the point IIw with longitude
a1 — ¢ (mod 27) and similarly the point e has longitude a; +¢ (mod 27). Thus the

equatorial image of C is

IIC =0 ([a1 — ¢, a1 + ¢] (mod2m)) =S'(Ila, §).

The statements above can be verified by using stereographic projection based
on the South pole of §2. to R? [22, Section 5.2.4, pp. 223-227, Section 7.4.1, pp.
349-351], projecting the South pole to infinity and the North pole to the origin.

We then use FEuclidean geometry on the plane.
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We now examine the angle ¢. The North pole O and the points a and e form
a spherical triangle, bounded by the meridians ®(a) and ©(e) and the geodesic ae.
By the well known sine formula for spherical triangles [22, Chapter 7, Theorem 8,

p. 348] we have

sins(0,e) _ sins(e,a)  sins(O,a)
sinZeaO  sinZaOe  sinZQOea’ (2.12.1)

Since a is the centre of the cap € and since the meridian ©(e) is tangential to 4C at
e, O(e) meets the geodesic ae at a right angle. We therefore have ZOea = 5 and

sin® sins(e,a)
sing  sin ZaOe

=sins(0,a) = sin 6. (2.12.2)

O

Proof of Lemma 2.5.10.

Note that since S(a, ®) ¢ $¢, the spherical cap S(a, ®) does not contain either pole,
and therefore every point of S(a, ®) has a meridian passing through it. Each meridian
through a point of S(a,®) also passes through 9S(a,®) and therefore 110S(a,®) =
I1S(a, ®).

Now consider the meridian ®(a) and a point q € $? which does not lie on the
great circle defined by d(a). As per Lemma 2.3.7, these define the great S2, G(a,q).

We now consider the intersection

S%(a, ®) := S(a,®) N G(a,q). (2.12.3)

We see that S9(a, @) is the spherical cap in G(a,q) with centre a and spherical radius
®, since S9(a, @) is the intersection of the S¢ spherical cap with centre a and spherical
radius ® with G(a,q) which is a great S? through a.

We also have

9S%(a, @) = 9S(a, ®) N G(a, q). (2.12.4)
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Proof of Lemma 2.5.13.

For a RISC region R which does not intersect either the North or South poles
of S¢, each side facet is the disjoint union of a set of meridian arcs. Each of the
meridian arcs which make up a side facet is a geodesic which joins a point of the

top facet to the corresponding point of the bottom facet, eg.

.7:271R= U @({a} X [wad]).

a€r,vi]x{va}x... X[Ta_1,v4-1]

Each of the meridian arcs which make up the side facets of the region R is part
of a meridian which meets the equator at the boundary IR of IIR. In fact OIIR is
the disjoint union of all such intersections between these meridians and the equator,
since every point of IR corresponds to a meridian through at least one of the side
facets of R.

This is straightforward to prove if all of the facets of R are boundary facets.
Now note that a degenerate facet of R corresponds to a degenerate facet of IIR, and

a pair of coincident facets of R corresponds to a pair of coincident facets of TIR.

O

The area of a spherical cap

Proof of Lemma 2.3.14.
From (2.3.37) we have

T (R)
VE,d(R) = wdfl/ sin?=1 9 d6.
0

We use the change of variables r = T(0) = 2sin £, giving

dr 0 0 r2
_— = - = 1— in2 —_ = 1——
74 = €055 1/ sin (2) 1/ T
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since 6 € [0,7]. We therefore obtain

Also

0
inf = 2sin - == 1——.
sin sing cosg =7

4

We can therefore express the area element in terms of r as
wy—1(sin )47t df = wg_1r97t (1 — ) dr, (2.12.5)

and therefore

Proof of Lemma 2.3.15.
From (2.3.35) we know that

Va(0) [T sin®le dg

Va(m)  [ysin? 1 ¢ de

Now substitute u = sin?(¢/2). Then, since ¢ € [0,7], by a well-known half angle

formula we have sin¢ = 2u2 (1 — u)2 and we also have du = vz (1 — u)2d¢, so

0

Valm) - JpusT (- wi du B(3:3)

Va(0) fst(%) w1 —u)s! du B (sin® §; 4. 9)

O

The properties of the function V as given by Lemma 2.3.16 are well known, but

we provide a proof here for completeness.
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Proof of Lemma 2.3.16.

In order,

1.
2.

V is smooth since it is an integral of a smooth function over an interval.

V is monotonic increasing in (0,7), since, using (2.3.41) DV(0) = wy_1sin? 14,
which is positive for ¢ € (0, 7).

V(0) = 0 trivially. Property 3 then implies that V(¢) > 0 for 6 > 0.

We have D?V() = (d—1)wy_1 sin?2 8 cos @, which is positive in (0,7/2) since both
sin and cos are positive there. Therefore DV is monotonic increasing in (0, 7/2).

From properties 3 and 5, we therefore have, for 0 < h < 7/2,
0+
0 < hDV() < / DV(€) dé = V(0 + h) — V(6) < hDV(0 + h),
6

for 6 € [0,7/2 — h].

. Property 6 implies in particular that

V(h) < hDV(h),

for h € [0,7/2], since V(0) = 0. We then have, for h <0 < 7/2 - h,

V(0 + h) — V(0) = hDV(0) = hDV(h) > V(h),

and for 6 <h <nw/2 -0,

V(0 + h) — V(h) = 6DV(h) > 6DV(0) > V(6),

so for 0 <0 +h < 7/2,

V(0) + V(h) < V(0 + h).

7. Using Property 2, we have DV(0) = DV(r — 6) since sin(f) = sin(m — 6).
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8. Using property 8, we have

Therefore,

V(O) + V(1 —0) = wa_1 /Tr sin?™1 € dE = wy.
0

Proof of Lemma 2.3.17.
Using (2344) with 9 = @d(v), we have Vd(ﬂ' — @d(v)) = Wwq — Vd(@d(v)) = Wwq — v, SO

m—04(v) = Oq(wg — v).

FEstimates

Proof of Lemma 2.3.18.
We see immediately that V(0) = 0. For ¢ € (0,7/2), since cos¢ > cosf for ¢ € [0,6),

this gives us

) 0 . d
cosf V(0) =wq_1 / cosf sin? !¢ dE < wg_q / cos¢ sin? € dE = wgq SH; o
0 0

Proof of Lemma 2.5.20.

For d > 2 we use (2.2.14) to obtain

wdd:2w%dr(g):dﬁ r( r(2)
wi-i - T (%) 272 r () Jar(d)
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Proof of Lemma 2.5.21.
As a result of Lemma 2.3.14 and (2.3.53), the normalized area Vg 4(R) is given
by

R 2
y _ Wil da-1(q_ "
VEﬁd(R) = wa /) r <1 4 > dr.

For R € (0,7], T € (0,2], we have

The result follows immediately. O

Proof of Lemma 2.5.22.
Assume d > 2. By (2.3.35),

Wda—1 _ 2 7% B 73 c (271')2 o
d r($)d r(¢+1) d) ’

where the upper bound results from (2.2.15). The result (2.3.56) follows immedi-
ately. O

Proof of Lemma 2.5.23.

Assume d > 2. By (2.3.56) we have

d
) d—1 14 (¢i1)a N
wd1<< d )d+1) :( (=4 )1) p (wd,l)d>1+\/27rd ord > 1.
1+(de—1)d d 1—|—ﬁ
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2.12.3 Separation and packing

Proof of Lemma 2.7.8.
Define

pie B (?) (2.12.6)

We therefore have p < prad X, the packing radius of X. This implies that we can
place each codepoint y of X in a spherical cap S(y, p) with no two caps overlapping.

This places an upper bound on g, of the form

9(R) = [X NS(x, T (R))]

_ (ST R) +p)  Ve(T(XU(R) + )
N 7 (S(x. p)) Ve(T(p))

where we have used (2.3.37) and (2.3.53) at the last step.

Since p € (0,%] we have
T
T(p)=2 sing >sinpg = —— =

and since (2.3.5) gives us
T R)+p<YTYR)+20="T1R)+ YA < THR+A),
we see that
Ve(Y(p) > Ve (2) and  Vg(Y(TY(R)+p)) < Ve(R+A).

From (2.12.7) we therefore have

Ve(R+A)
Ry < 2T
9(R) Ve (5)
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Since A <2, (2.3.54) and (2.3.55) give us

9(R) <

CH,d (R+A)d _od CH,d (RJrA)d

2.12.
Coah)(2) " Ca \ A (2.12.7)

This establishes (2.7.13).
To obtain (2.7.14) we note that for R < A we must have g(R) = 1 since the cap

contains x itself. For R > A we have 2R > R+ A and so

(552) <= (5)"

2.12.4 Energy, weak-star convergence

Proof of Lemma 2.11.4.
Given Ny, define Ny+1 continuous non-negative functions f; to fy,+1 with disjoint

support, such that for each j € {1,..., Ny + 1},

Wﬁ&ﬂﬂw=1

Now define ¢ < 1. Since X is weak-star convergent, this means that for each

j€{l,...,No + 1}, there is an L; such that for all ¢ > L; we have

é e, v) 1| <e (2.12.8)

The inequality (2.12.8) implies that at least one point of X, is contained in the
support of f;. Now take Ly = max(Li,...,Ly+1). For £ > Ly we therefore must have

at least one point of X, in each of the Ny + 1 disjoint sets which are the supports of

{fioooos ot} O
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Proof of Lemma 2.11.6.

This proof uses [122, Theorem 4.1, p. 665] with measures on S? Given a
sequence X of S? codes, consider the corresponding sequence of normalized counting
measures, (oy,,¢ € N) and the normalized Lebesgue measure & on S¢ as measures on
RA+1,

Let L be the space of real linear functions on R¥+!, restricted to S?. For p € L
and v € R the set p~1(v) is the preimage of v in S?. For the constant functions, this
is either empty or is the whole of S¢. The non-constant linear functions are of the
form p(x) = a-x+b, with a non-zero. In R¥** functions of this form have a preimage
of the form {x € R¥*! | a-x = v—b}, which is a hyperplane orthogonal to a, at distance
ﬁ from the origin. When p is restricted to S? the corresponding preimage is the
intersection of the hyperplane with S¢, in other words, either the empty set, a single
point or a small sphere. As v varies continuously, the distance from the origin of
the corresponding hyperplane also varies continuously, as do the small spheres and
their normalized Lebesgue measures. We have shown that & op is continuous for
each p € A.

Following [122, 4. p. 665], let H; be the class of half spaces of R¥*!, that is, sets
of the form {x € R*! | p(x) < v} for some p € L and some v € R. If we have A € H;
then AN S? is the empty set, a point or a spherical cap, 7x,(4) = 6x,(ANSY) and

(A) = 5(ANnSY). Therefore

sup |lox,(A) —a(A4)| = dise(Xp).
A€eH,

If a real function is continuous on R4*! it is continuous on S¢, and therefore sy,
converges weakly to ¢ on R4+! if and only if it converges weakly to ¢ on S¢. Thus
by [122, Theorem 4.1, p. 665], if a sequence X of S? codes is weak-star convergent
then the corresponding sequence of spherical cap discrepancies converges to zero.

One way to prove the converse is by first referring to [85, Theorem 3.3, p.

113], which gives an upper bound on the quadrature error of spherical harmonic
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polynomials in terms of the spherical cap discrepancy, and then using the Stone-
Weierstrass theorem.
In more detail, for a S code X where |X| = N, [85, (8), p. 109] defines a

discrepancy based on spherical harmonics by

1 D,
disc®(X) :=sup — s(uf;)
u>1 pd j=1

1 N
R (2.12.9)

k=1

where Y/ is the spherical harmonic of degree p and order j, and where D(d, p) is
the dimension of P,(S%), the space of S? polynomials of homogeneous degree n, as
per (2.6.4). In [85, Theorem 3.3, p. 113] it is shown that for any S code X where
|X| =N, the inequality

2d(d + 1)

Wqg—1 T

disc®(X) < disc X (2.12.10)

holds. We then take any polynomial p € P;(S?) and expand it in spherical harmonics

to give

t D(d,p
:Z Z Clug)Y,
=0 j—1

The triangle inequality, (2.12.9) and (2.12.10) then yield

[ pe0dit — [ iy x

*

t D(
<2

&

)
el | [ Y2005~ [ ¥t

pn=0 j=1
¢ D(dp)
< || 1 dise®(X)
p=1 j=1
¢ D(dp)
2d(d + 1)
d .
< |c(ﬂ’j)|,u D disc(X)
el d—1

— 0 as disc(X) — 0.

We now use [93, Theorem 0.4, p. 7] which applies to vague convergence of

measures. As per [93, p. 3], vague convergence is defined in terms of C.(S?), the
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space of real continuous functions on S? with compact support. But since S¢ is
itself compact, C.(S?) coincides with C(S%), the space of real continuous functions
on S?. The definition of [93, (0.1.7), p. 7] as applied to S¢ therefore coincides with
Definition 2.11.1, and we can therefore apply [93, Theorem 0.4, p. 7] here. We
define C*(S?) to be the non-negative real continuous functions on S?. As applied to
our case, [93, Theorem 0.4, p. 7] then states that if the set M c C*(S%) is dense in

C*(S%) and if
) dv(x) = [ F(x) dv(x),
sd sd

for any function f € M, then v, weakly converges to v.

Finally, we apply the Stone-Weierstrass theorem [90, Lemma 1.1, p. 173], which
in our case states that the polynomials on S? are dense in C(S?). With a little
effort, this can be used to show that the non-negative polynomials on S¢ are dense
in C*(S%). (See also [124, Theorem 5.8, p. 121] for a proof of Weierstrass’ theorem

which is sufficient for our purposes here.) O

Proof of Lemma 2.11.8.

Fix d > 1 and use the abbreviation J := J,. For any particular x,y, define
r = |x—yl|, 6 := Y(r), so that r is the Euclidean distance from x to y, and 6 is
the spherical distance. The expression J(x; R)u is an integral over the spherical cap
Sg(x,R). From the proof of Lemma 2.3.14 and from (2.12.5) we see that the relevant

area element for the integral J(x;R)u is

d
2\ 21
DL (sin g) 4t dp = CLp (1 - T) dr.
wWd Wd

We therefore have

J(x; R)u = 241 /OR u(r) i1 (1 - 72) dr = J(R)u

Wd

independent of x. O



CHAPTER 3

Equal area partitions

“And so we two shall all love’s lemmas prove,

And in our bound partition never part.”

— Lem [95, Love and Tensor Algebra, pp. 52-53].

3.1 Introduction

This chapter describes a partition of the unit sphere S¢ ¢ R*! which is here called
the recursive zonal equal area (EQ) partition. Parts of this chapter appear in [99].
The partition EQ(d, V) is a partition of the unit sphere S¢ into M regions of equal
area and small diameter. It is defined via the algorithm given in Section 3.2.
Figure 3.1 shows an example of the partition EQ(2,33), the recursive zonal equal
area partition of S? into 33 regions. A movie showing the build-up of an example
of the partition EQ(3,99) is available via the author’s web site at UNSW [100].
Definition 3.1.1. The set of recursive zonal equal area partitions of S¢ is defined

as

EQ(d) := {EQ(d,N) | N € N, }. (3.1.1)

where EQ(d, N') denotes the recursive zonal equal area partition of the unit sphere S

imto N regions, which is defined via the algorithm given in Section 3.2.

73
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Figure 3.1: Partition EQ(2,33)

Later in this section we prove that the partition defined via the algorithm given

in Section 3.2 has the following properties.

Theorem 3.1.2. For d > 1 and N > 1, the partition EQ(d,N) s an equal area
partition of S.

Theorem 3.1.3. For d > 1, EQ(d) is diameter-bounded in the sense of Definition
2.4.8.

The proof of Theorem 3.1.2 is straightforward, following immediately from the
construction of Section 3.2. A sketch of the proof of Theorem 3.1.3 is given in
Section 3.4, and the full proof is given in Section 3.6.

The construction for the recursive zonal equal area partition is based on Zhou'’s
construction for §? [167], as modified by Saff [133], and on Sloan’s notes on the
partition of §? [141].

The existence of partitions of §? into regions of equal area and small diameter

is well known and has been used in a number of ways. Alexander [3, Lemma 2.4
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p. 447] uses such a partition of §? to derive a lower bound for the maximum sum
of distances between points. The paper also suggests a construction for §? [3, p.
447], which differs from Zhou’s construction. For 6m? regions, Alexander begins
with a spherical cube which divides S? into 6 regions, then divides each face into m
slices by using a pencil of m — 1 great circles with positions adjusted so that each
slice has the same area. Finally, each slice is divided into m regions of equal area
by another pencil of m — 1 great circles, which may differ for each slice. Alexander
then asserts that the diameters are the right magnitude and omits a proof. This
construction has an obvious generalization for S¢ with 2(d+1)m? regions. Start with
the appropriate spherical hypercube, then divide each face into m equal pieces, and
so on. It is not clear that this partition of S¢ is diameter-bounded in the sense of
Definition 2.4.3.

The existence of a diameter bounded set of equal area partitions of $? is used
by Stolarsky [147], Beck and Chen [6] and Bourgain and Lindenstrauss [20], but no
construction is given.

Stolarsky [147, p. 581] asserts the existence of such a set, saying simply,

“Now clearly one can choose the A4; so that their Euclidean diameters
are >< N~ a1 for 1 <i < N.”
Here Stolarsky is discussing a partition of S™~! into N regions labelled A;. Sto-

larsky’s notation >« is equivalent to order notation, and his assertion can be

restated as:

There are constants ¢, C > 0 such that for any N > 0 one can choose the
regions A; so that their Euclidean diameters are bounded by ¢eN~#1 <
diam A; < CN~ =1 for 1 <i < N.
The paper then uses this assertion to prove a theorem which relates the sum of
distances between N points on S™~! to a discrepancy which is defined in the paper.
Beck and Chen [6, pp. 237-238| essentially cites Stolarsky’s result, asserting

that
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“One can easily find a partition

N
st=JR
£=1

such that for 1 </ <N, o(Ry) = %Sd) and diam R, < N'~4, where diam R, is
the diameter of R,.”

[With notation adjusted to match this thesis.]

Bourgain and Lindenstrauss [20, p. 26| cite Beck and Chen [6] and use a
diameter-bounded equal area partition of S*~!' to prove their Theorem 1 on the
approximation of zonoids by zonotopes.

Stolarsky’s assertion can be proved using the method used by Feige and Schecht-

man [54] to prove the following lemma.

Lemma 3.1.4. (Feige and Schechtman [54, Lemma 21, pp. 430-431])

d
For each 0 <~ < % the sphere %' can be partitioned into N = (%) regions of

equal area, each of diameter at most .

Feige and Schechtman’s proof is not fully constructive. The construction as-
sumes the existence of an algorithm which creates a packing on the unit sphere
having the maximum number of equal spherical caps of given spherical radius [164,
p. 1091] [165, Lemma 1, p. 2112]. This assumption is not necessary for the proof,
and a fully constructive proof is therefore possible. This is given here as the proof
of Lemma 3.8.1 below.

Wagner [159, p. 112] implies that a diameter-bounded sequence of equal area
partitions of S can be constructed where each region is a rectangular polytope in
spherical polar coordinates. For §?, this is the same form of partition as [167] and
[133], and for §¢, this is the same form as given in this thesis.

Rakhmanov, Saff and Zhou [120], Zhou [167, 168] and Kuijlaars and Saff 134, 88]
use the partition of §? given by Zhou’s construction to obtain bounds on the extremal

energy of point sets.
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Other constructions for equal area partitions of S? have been used in the geo-
sciences [84, 145] and astronomy [152, 37, 62|, but these constructions do not have
a proven bound on the diameter of regions. In particular, the regions of the “igloo”
partitions of [37] have the same form as [167] and [133]. The paper [37] also discusses
nesting schemes for “igloo” partitions.

The paper [96], on the problem of partitioning S? into spherical quadrilaterals
of equal area, describes in great detail a construction very similar to Alexander’s
construction [3], but does not reference [3]. It instead says “We have found no
references on this problem in the literature”.

The remainder of this chapter is organized as follows. Section 3.2 describes the
partition algorithm. Section 3.3 presents an analysis of the regions of a partition,
including a number of lemmas used to prove the main theorems. Section 3.4 gives
a sketch of the proof of Theorem 3.1.3. Section 3.5 describes a continuous model
of the partition algorithm. Section 3.6 presents the proof of the main theorems.
Section 3.7 proves a per-region bound on diameters. Section 3.8 presents a proof of
Stolarsky’s assertion [147, p. 581] on the existence of equal area partitions of the
sphere with small diameter. Section 3.9 describes the Matlab implementation of
the EQ partition algorithm. Section 3.10 presents numerical results. Section 3.11
contains detailed proofs of lemmas. Section 3.12 contains estimates of the values of

some constants resulting from Theorem 3.1.3 and its proof.

3.2 The recursive zonal equal area partition

This section describes the recursive zonal equal area partition and recursive zonal
equal area partition algorithm in some detail.

3.2.1 The recursive zonal equal area partition algorithm in outline

The recursive zonal equal area partition algorithm is recursive in dimension d. The

pseudocode description for the algorithm for EQ(d,N) is given by Figure 3.2.



78 Chapter 3. Equal area partitions

if N =1 then
There is a single region which is the whole sphere;
else if d =1 then
Divide the circle into NV equal segments;
else
Divide the sphere into zones, each the same area as an integer number of regions:
1. Determine the colatitudes of polar caps,
2. Determine an ideal collar angle,
Determine an ideal number of collars,
Determine the actual number of collars,
Create a list of the ideal number of regions in each collar,
Create a list of the actual number of regions in each collar,
7. Create a list of colatitudes of each zone;
Partition each spherical collar into regions of equal area,
using the recursive zonal equal area partition algorithm for dimension d — 1;
endif.

O Ot W

Figure 3.2: The recursive zonal equal area Partition algorithm

EQ(3,99) Steps 1 to 2 EQ(3,99) Steps 3to 5

y,=144..

//2 =337...
V(e,) = Vg

= o(s%)/99

Y, = 33.7...

EQ(3,99) Steps 6to 7

Figure 3.3: Partition algorithm for EQ(3,99)

Figure 3.3 is an illustration of the algorithm for EQ(3,99), with step numbers corre-
sponding to the step numbers in the pseudocode. We now describe key steps of the

algorithm in more detail.
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3.2.2  Dividing the sphere into zones

This is the key part of the algorithm, and is split into a number of steps. Each
step is described in more detail below. For brevity, we assume d > 1 and A > 1 and
we omit mentioning dependence on the variables d and A/, where this can be done

without confusion.

1. Determining the colatitudes of polar caps.
Each polar cap is a spherical cap with the same area as that required for a

region. For an N region partition of S, the required area of a region R is
VR = (321)

where w, is the area of S¢, as per (2.3.35).
The colatitude of the bottom of the North polar cap, 9. is the spherical radius

of a spherical cap of area Vi. Therefore
e = O(Vn), (3.2.2)

where the function © is defined by (2.3.45). The colatitude of top of the South
polar cap is then = — ..
2. Determining an ideal collar angle.

As a result of Lemma 2.3.2, spherical distance approaches Euclidean distance
as the distance goes to zero. We now use the idea that to keep the diameter
bounded we want the shape of each region to approach a d-dimensional Eu-
clidean hypercube as N goes to infinity. That way, the diameter approaches
the diagonal length of the hypercube. The collar angle, the spherical distance
between the top and bottom of a collar in the partition, therefore should
approach Vg as N approaches infinity.

We therefore define the ideal collar angle to be

5p = Vi. (3.2.3)
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3. Determining an ideal number of collars.

Ideally, the sphere is to be partitioned into the North and South spherical
caps, and a number of collars, all of which have angle ;. The ideal number

of collars is therefore

npi= T ’512199 (3.2.4)

. Determining the actual number of collars.

We use a rounding procedure to obtain an integer n close to the ideal number
of collars.

If N =2, then n:=0. Otherwise

n := max (1, round (ny)), (3.2.5)

where, as usual, for 2 > 0,

round(z) := [z + 0.5, (3.2.6)

where || is the floor (greatest integer) function.

The number of collars is then n.

. Creating a list of the ideal number of regions in each collar.

We number the zones southward from 1 for the North polar cap to n+ 2 for
the South polar cap, and number the collars so that collar i is zone i + 1.

We now assume N > 2. The “fitting” collar angle is

-2
(SF 22%5[:71- 196.

(3.2.7)

We use §r to produce an increasing list of “fitting” colatitudes of caps, defined

by

ﬁpyi =, + (Z — 1)5F, (328)
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forie{1,...,n+1}.

The area of each corresponding “fitting” collar is given by successive colati-

tudes in this list. The ideal number of regions, y;, in each collar i € {1,...,n}
is then
yi = LORi+1) = VOrs) (3.2.9)
Vr

6. Creating a list of the actual number of regions in each collar.
We use a rounding procedure similar to that of Zhou Lemma 2.11 [167, pp.
16-17]. With n the number of collars as defined by (3.2.5), we define m;, the
required number of regions in collar i € {1,...,n} as follows.

Define the sequences a and m by starting with ao := 0, and for i € {1,...,n},
m; :=round(y; +a;_1), a; := Z(yj —mj). (3.2.10)

7. Creating a list of colatitudes of each zone.

We now define 9y :=0, ¥,,2 := 7 and for i € {1,...,n+ 1}, we define

PRNS ((Himj)vfc). (3.2.11)

For i €{0,...,n+1}, we use Z as per (2.3.16) to define zone i to be Z(9;,9;11).

Finally, for i € {1,...,n}, we define collar i to be zone i.

3.2.3 Partitioning a collar

We partition collar i of EQ(d, V) into m; regions, each corresponding to a region of
the partition EQ(d—1,m;). We assume that each region of EQ(d—1, m;) is rectilinear in
spherical polar coordinates (RISC) as per Definition 2.3.11. If region j € {1,...,m;}
of EQ(d —1,m;) is R((r1,---,7a—1), (v1,...,v4-1)), then we define the region R of collar

i of EQ(d, V) corresponding to region j of EQ(d — 1,m;) to be

R:=R ((Tl, e ,Tdfl,?%), (’Ul7 [N ,Udfl,’lg7;+1)). (3212)
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Remarks. The partition EQ(d, V) is not fully specified by this algorithm.
The algorithm instead specifies an equivalence class of partitions, unique
up to rotations of the sectors of the partitions of S'. This means that
the collars of EQ(2,N) are free to rotate without changing diameters of
the regions and without changing the colatitudes of the collars. The

regions remain rectilinear in spherical polar coordinates.

3.3 Analysis of the recursive zonal equal area partition

The proofs of Theorems 3.1.2 and 3.1.3 proceed by induction on d, matching the
recursion of the recursive zonal equal area partition algorithm. This section presents
the preliminary analysis of the recursive zonal equal area partition, including the
lemmas needed by the proofs of Theorems 3.1.2 and 3.1.3. Section 3.11 contains
proofs of the lemmas.

First, we characterize the regions of a recursive zonal equal area partition. Fol-
lowing this, we examine the case d > 1, N > 1 in some detail. The cases d =1 and
N =1 are simpler and are included in the proof itself.

By induction on the construction given in Section 3.2, we see that the regions
produced by the recursive zonal equal area partition algorithm are RISC regions as
per Definition 2.3.11, and for d > 1 each region R of collar i is of the form (3.2.12).

Each such region therefore has an equatorial image of the form

IR = © ([11,v1] X [T2,v2] X ... X [Ta—1,v4-1]) (3.3.1)

= R((Tl, e ,Td_l), (Ul, e ,Ud_l)) S EQ(d — 1, ml)

as per Lemma 2.3.12 and Section 3.2.3 above.

We now consider the two polar caps. The following lemma on the diameter
of the polar caps has an elementary proof, which is included in Section 3.11 for
completeness.

Lemma 3.3.1. Ford > 1 and N > 1, the diameter of each of the polar caps of the

recursive zonal equal area partition EQ(d,N') is 2 sind.., where 9. is defined by (3.2.2).
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An analysis of the diameter of the polar caps is not needed for the proof of
Theorem 3.1.3. This is a consequence of the isodiametric inequality for S¢.

Theorem 3.3.2. (Isodiametric inequality for S¢)

Any region R C S of spherical diameter § < has area bounded by

awev (D).

Equality holds only for spherical caps of spherical radius §.

Remarks. This result is well known. See [16] for a proof of a generalized
version of this inequality, based on the proof of [7].
The corresponding result for Euclidean space — with no restriction on
diameter — is also well known [53, Corollary 2.10.33 p. 197].
Corollary 3.3.3. The polar caps are the regions of smallest diameter of EQ(d,N).
Considering Corollary 3.3.3, the polar caps need not be taken into account when
estimating the maximum diameter of regions of EQ(d,N) for N > 2. We therefore
turn our attention to the regions contained in collars.
The following lemma leads to a bound on the diameter of a region contained in

a collar.

Lemma 3.3.4. Given a,b,c € S¢ where

a:=0(a,a,...,04-1,A4), b:=0(B1,0,...,0q-1,B), c:=0(a,az,...,0q4-1,B),

(3.3.2)

with sin B > sin A, then the Fuclidean R+ distance ||la —b| satisfies

2 2
la—b| < y/lla—c| + e — b,

The following definitions are of use in examining the diameter of R in terms of

|la—c|| and |c — b]|. For region R contained in collar i of EQ(d,N),
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e the spherical distance between the top and bottom parallels of region R is
6i = 197;_;,_1 — 7.9@‘, (333)
e the maximum Euclidean radius of collar i is

SiIl'l92'+1 if 191‘4_1 < g,

i = i = 3 ) 1 . jus 3.4
wi=  max sinE=gsing; i 0>, (3.34)

1 otherwise.

We can now use Lemmas 2.3.2 and 3.3.4 to show that

Lemma 3.3.5. For region R contained in collar i of EQ(d,N') we have

diaom R < \/T(8,)2 + w?(diam TTR)?

< (/02 + w2(diam IR,

where §; and w; are given by (3.3.3) and (3.5.4) respectively.

3.4 Sketch of the proof of Theorem 3.1.3

The proof of Theorem 3.1.3 proceeds by induction on the dimension d. The inductive
step of the proof starts with the observation that if d > 1 and if the set EQ(d — 1)
has diameter bound «, then for any region R of collar i of the partition EQ(d,N) we

have

1
diamIIR < km,; ™7,

and therefore from Lemma 3.3.5 we have

diam R < /67 4+ k2p2,
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where the scaled S¢—! diameter bound p; is

pi == w;m; " (3.4.1)

K2

As a consequence, if d > 1 and if EQ(d — 1) has diameter bound &, then for any

region R of the partition EQ(d, N)

diam R < \/(max §)? 4+ Kk2(max p)?, (3.4.2)

where max§:= ?ax d;, maxp:= F{nax }pi,
n

and n is the number of collars in the partition EQ(d, V).

Thus to prove the theorem it suffices to show that maxé and maxp are both of
order N~4. Since the Euclidean diameter of a region of $¢ is always bounded above
by 2, we need only prove that there is an Ny > 1 such that for /' > N, we have
bounds of the right order. This is because for any N, > 1 and any N € [1, Ny] we

have
1 1
ING N~ >2.

Remarks. Lemma 3.3.5 in its current form is not strictly necessary for
the proof of Theorem 3.1.3. A lemma using the triangle inequality would
suffice. The main reason for using Lemma 3.3.5 is to improve the value

of the constant K, of Theorem 3.1.3.

The key strategy in estimating maxdé and maxp is to replace the integer variable
i by a small number of real valued variables constrained to some feasible domain,
replace § and p with the equivalent functions of these real variables, and then to
find and estimate continuous functions which dominate these equivalent functions.

To replace i, we first must model the rounding steps of the partition algorithm.

Sr

We model the first rounding step by finding appropriate bounds for p = % = &£,

where §p is defined by (3.2.7).
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The second rounding step takes the sequence y and produces the sequences m
and a. To model this step, we first show that a; € [-4,3). This allows us to
define the analog functions Y, M, A, W, P corresponding to y,m,d,w,p respectively.
These analog functions are defined on the real rounding variables = and 3 and the
colatitude variable ¥, such that Y coincides with y, etc. when r = —a;_;, 8 =a; and
¥ = 9p;, where vp; is defined by (3.2.8).

We then define the feasible domain D such that the second rounding step always
corresponds to a set of points in D.

The final and longest part of the proof is to show that both A and P are asymp-
totically bounded of order AN—@ over the whole of D. In this final part, we need
estimates for the area function v and the inverse function ©. Crude but very simple

estimates of these functions yield bounds for A and P of the correct order.

3.5 A continuous model of the partition algorithm

3.5.1 Rounding the number of collars

For the first rounding step, which produces n from n;, we define

pi=t (3.5.1)
so that
§F = pdr (3.5.2)
We recall from (3.2.6) that for = > 0,
round(z) € (m - %x + ;] (3.5.3)

Therefore, using (3.2.5) and (3.5.3), for N > 2, if n; > 1 then

1
2

ne (n;—;,nz—ké]. (3.5.4)
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We can now prove the following.

Lemma 3.5.1. For N’ >2, ifn; > 1 then

1 1
pe 12n1+1,1+2n1_1>. (3.5.5)

Using (3.2.4) and Lemma 3.5.1, we see that bounds for p are given by lower

bounds for n;. The crudest bound is given by n; > %, for then

1 1 1
pe 1—2n1+1,1+2n1_1)c<2,oo). (3.5.6)

We can re-express the bound n; > 3 in terms of a lower bound on A by means

of the function v, where

vo)i= (2) (=20 (%)), (3.5.7)

Lemma 3.5.2. The function v defined by (3.5.7) has the following properties.
1. v(2)=0.
2. v(N) =n;.
3. v(zx) is monotonically increasing in x for x > 2.

As a consequence of Lemma 3.5.2, it is possible to define the inverse function

Ny where
No(y) :== v (y), (3.5.8)

for y > 0. We then have Ny(v(z)) =z and v(Ny(y)) =y for 2 > 2 and y > 0, and by the
inverse function theorem, Ny(y) is monotonic increasing in y for y > 0.

For N > z such that =z > NMy(1/2), we then have

(3.5.9)

NN

ny > v(zx) >
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and

pe [,0[,(1'),,01—[(55)], (3510)

where

1 1

T @1 and pH(:c):=1—|—2l/(x)_1. (3.5.11)

pr(z) =

We can make pr(z) and py(x) arbitrarily close to 1 by making x large enough. More

precisely,
pr(x) /1, and pg(z) \, 1 as r — oo. (3.5.12)

3.5.2  Rounding the number of regions in a collar

To model the second rounding step of the partition algorithm, we take note of the

following two lemmas.

Lemma 3.5.3. Ford>1 and N > 1, with n, 9;, 9, yi, mi, a; and Vg as per (3.2.5),

(8.2.11), (3.2.8), (3.2.9), (3.2.10) and (3.2.1) respectively, we have
Zn:yi =N -2 (3.5.13)
i=1
and
m; =i +a;,-1 — aj, (3.5.14)

forie{1,...,n};

V(¥i) = V(JF,;) +ai-1Vr, (3.5.15)



3.5. A continuous model of the partition algorithm 89

forie{1,...,n+1}; and

V(Wiy1) — V() (3.5.16)

m; =

forie{1,...,n}.

Lemma 3.5.4. Given a finite sequence y of length n, where

N |

Vi ER, y;> for ie{1,....n}, and ZyiszZEN,
1=1

if we use (3.2.10) to define the sequences m and a, then m and a have the following

properties:

meN, meNy for ie{2,...,n}, (3.5.17)

a; € [—i,é) for ie{1,...,n}, (3.5.18)

dp = 0, Xn: m; = Xn:yi. (3519)
i=1 i=1

If the sequence y is symmetric, then m and a have additional symmetry prop-
erties, which we examine here. These symmetry properties are not needed for the
proof of Theorem 3.1.3, but are used to optimize the Matlab implementation of the

partition algorithm.
Lemma 3.5.5. Assuming the definitions of Lemma 3.5.4, define L :=|%].

If in addition to conditions of Lemma 3.5.4, the sequence y is symmetric, that
1S, Vi = Yn_is1 for i € {1,...,L}, then the sequences m and a then have the following
properties.

1. If n is even and N is odd then the sequence m is not symmetric.

2. If the sequence m is symmetric then the sequence a has a; = —an—; for all

j€A0,...,L}.

3. The sequence m is symmetric if and only if, for all i € {1,...,L}, a; # —3.
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Remarks. From Step 5 of the partition algorithm, we see that the se-
quence y is symmetric. Thus the only circumstances where m is not
symmetric are when n is even and N is odd, and otherwise when some
a; = —3. Since the sequence a is the result of a rounding process, in prac-
tice we rarely have any a; = —3 unless n is even and N is odd. Therefore
the sequence m is symmetric often enough for this property to be use-
ful in the optimization of the Matlab implementation of the partition

algorithm.

3.5.8  Functions which model the regions in a collar

To make it easier to find bounds for functions which vary from zone to zone, such
as y,m we define and use continuous analogs of these functions. This way, instead
of having to find a bound for a function value over n+ 2 points, where n varies with
N, we need only find a bound for a function over a fixed number of points and
continuous intervals.

Motivated by Lemmas 3.5.3 and 3.5.4, we define

V(& +6p) — V(V)

V() = Ve : (3.5.20)
T(r,9) == 0(V(¥) — TVr), (3.5.21)
B(B,9) := 0 (V¥ + bp) + BVr), (3.5.22)

M(r,B,9) = Y(0) +7+ 5, (3.5.23)
A(r, 8,9) = B(8,9) — T(7,9), (3.5.24)
W(r, 3,9) : ax siné, (3.5.25)

= m
E€[T (7,9),B(8,9)]

P(r, B,9) 1= W(r, B,9) M(7, B,0) 7. (3.5.26)

These functions have the following desirable properties.
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Lemma 3.5.6. Foric {1,...,n} we have

V(i) = Yis
T(*ai—hﬁF,i) =1,
B(ai, VF,i) = Yit1,
M(—aj—1,3;,VF;) = m;,
A(—a;_1,2;,9p,) = 05,
W(—aj_1,2;,0F;) = W,

P(—-ai—1,3i,VFi) = pi-

3.5.4  Symmetries of the continuous analogs

Lemma 3.5.7. The function Y satisfies

Y(r—19) =Y —dp).

Lemma 3.5.8. The functions T and B satisfy the identities

T(r,m—09) =7 —B(1,9 —dp),

B(B,m— V) =m—T(3,0— 6p).

Lemma 3.5.9. For each f € {M,A, W, P}, the function f satisfies

f(r,B,m—9) = f(B, 7,9 —dF).

3.5.5 Feasible domains

For our feasible domain we therefore use the set D, defined as follows.

Definition 3.5.10. The feasible domain D is defined as

D:=D, UD,, UD,

91

(3.5.27)
(3.5.28)
(3.5.29)
(3.5.30)
(3.5.31)
(3.5.32)

(3.5.33)

(3.5.34)

(3.5.35)

(3.5.36)

(3.5.37)
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where

Dei= ((7:8.0) | =05 € | -5.3] 0 =), (3.5.38)
D, = 9 11 L1 hemw 9 — 26 3.5.39
m s {(T7ﬂu )|T€ [_272:| 756 |:_2a2:|a E[ F2,T — 0_2 F]}7 ( cJ. )
Dy = {(r8.9) | 7€ |35 ] 8= 0.0 =7 - 0.~ b} (3.5.40)

We use closed intervals for 7 and g because we need to support a number of
symmetry properties which we will examine in Section 3.5.4 below.
Lemma 3.5.11. Assume that d > 1 and that EQ(d — 1) has diameter bound . Then
for N> 2, if we define

maxdiam(d, N) := Retax diam R, (3.5.41)
€ ,

then

maxdiam(d, N') < \/(m]gux A)2 + /<;2(m]§x73)2,

3.5.6  Symmetries of the feasible domain D
We now show that we need only consider the northern hemisphere to obtain a valid
bound for the diameter of a region of the recursive zonal equal area partition of S?.

We first define the following subdomains of the feasible domain D.

N

D, = {(T,ﬂ,ﬁ) eD ‘ ¥

} | (3.5.42)
} , (3.5.43)

D_:= {(T,,B,l?)G]D) ‘19>

Dy =Dy, Dy, (3.5.44)

The following result then holds.
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Lemma 3.5.12. For f € {M,A,W,P} and (r,3,9) € D_, we can find (v',3,9") € Dy
such that f(r',5,9") = f(r,8,9). In particular, if (r,3,9) € Dy, then (v',3',9") € Dy, and
if (1,8,9) € Dy,—, then (7',8,9") € Dy

Corollary 3.5.13. For f € {M,A,W,P},

max j = max J.
D ! D, !

3.5.7 Estimates

Recall from (3.2.2) and (3.2.1) that 9. = © (%) and define

Je(z) := sinc© <ﬁ> . (3.5.45)

T

As a result of (2.3.48), for N >z > 2 we have

ﬁceuﬁkgmiﬂ]( d )é 1. (3.5.46)

Wd—1

Using Lemma 2.3.18, we obtain the following upper bound for sin4..

Lemma 3.5.14. For z > 2,

1, wq wq d a
xd sin © (;) < (w(i_l) . (3547)
Therefore, for N > 2,
. d \1
sind, < ( ) 5r. (3.5.48)
Wd—1

Combining (3.5.45), (3.5.46) and (3.5.48) we have the estimate

Smmem@m}<d)é& (3.5.49)

Wd—1

for N >z>2.
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Recalling (3.2.3), we also have
5 = wiN~H, (3.5.50)

As another consequence of (3.5.46) we have the following estimate for the number
of collars of EQ(d, N).

Lemma 3.5.15. For N > Ny(1/2), the number of collars n satisfies the estimate
n< —. (3.5.51)

The definitions of the functions A and P and the definition of the feasible domain
D depend on the fitting collar angle 6. Thus the proofs of Lemmas 3.5.25 and 3.5.26

need an estimate for §p.
Recall from (3.5.2) that 6z = pd;. Therefore, from (3.5.10), for N > = > Ny(1/2),
where A, is defined by (3.5.8) we have

oF € [pL(l‘),pH(LL‘)](SI. (3552)

We also need estimates for 95, as defined by (3.2.8), and for sinvr; and V(9r,).

Here and below, we generalize the definition of ¥p;, by defining
7-9F,L = 196+(L71)5F, (3553)

for . € [1,n +1].
For N > = > Ny(1/2), where A is defined by (3.5.8), the estimates (3.5.46) and
(3.5.52) now yield

=

Wd—1 Wd—1

I, € [( d )é-l-(L—l)pL(mL( d ) Jo(@)5 = Dpu(@)| 6. (3.5.54)
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The estimates for sindp, and V(9r,) below assume that N > z > Ny(1/2), where

Ny is defined by (3.5.8), and the lower bounds for these estimates also assume that

o (%) + (e - Dpp() (%) < g (3.5.55)
If we define
Jr,(x) := sinc (@ (%) +(—1Dpu(z) (u;i)é) , (3.5.56)

then from (2.2.6) and (3.5.54) we have the estimate

1 1

sindp, € [JF,L@)(( d )d+<L—1>pL<x>),( d )dJc<x>lf+<L—1>pH<x>] b

Wd-1 Wd—1
(3.5.57)
and from (2.3.47) we have the estimate
V(Or,) € [sr.(x), su,.(2)] VR, (3.5.58)
where
w P d
spa(@) = Jp (@) (1 + (= 1)pr(x) ( il_l > :
1\ d
sialw) = (a7 + 0= D) (442
If we define
w 1\ d
S

then, since Jg,(z) /1, Jo(z) /1, pr(z) /1 and py(z) \ 1, as z — oo we see that

sp.(x) /s, and s () s, (3.5.60)
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as r — oo.

By making z large enough and : small enough, we can ensure that (3.5.55) holds.
Lemma 3.5.16. If = > Ny(5), where Ny is defined by (3.5.8), then (3.5.55) holds
for

For the remainder of this chapter we use the abbreviation

1
= . .5.61
T Rrd (3.561)

The proofs of Lemmas 3.5.25 and 3.5.26 require the following results, which

follow from Lemma 2.3.23.

Lemma 3.5.17. There is an = > Ny(5), where Ny is defined by (3.5.8), such that

1\ d
_1\d 3
o (@) <1+n pule) (£41) ) >3 (3.5.62)

Lemma 3.5.18. There is an z > Ny(5), where Ny is defined by (3.5.8), such that x
satisfies (3.5.62) and also satisfies

1

1 d—1
) ; pL@)) o1 (3.5.63)

po(e) Wi Tpa(e)? ( ( d

Wd—1

The following result and its corollaries are also used in the proofs of Lemmas

3.5.25 and 3.5.26.

Lemma 3.5.19. Ifz > Ny(5), where Ny is defined by (3.5.8), and z satisfies (3.5.62)

then for N> x we have

V(b +0dr) > Vi (3.5.64)
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As a result of (3.5.64) we have

V(e +1or) — V(D) > % (3.5.65)

Using Lemma 2.3.16 and the symmetries of the sine function, we have

% V(@ +ndr) — V() = DV(I +ndr) — DV(V)
= Wi_1 (sind_l(ﬁ +n0p) —sin?! )

>0 forde (o, T 775;] , (3.5.66)

with equality only when ¢ = Z — 2.

This results in the following corollary.
Corollary 3.5.20. If = > Ny(5), where Ny is defined by (3.5.8), and x satisfies

(8.5.62) then for N >z and 9 € [9.,7 — 9. — nér] we have

V@ + 7or) — V(9) > % (3.5.67)

If > Ny(5), where A is defined by (3.5.8), and N > z then n > 5, S0 ¥pa < Z.

Since 8rd > 167 > 49, we therefore have

nir < °F. (3.5.68)

The convexity of V as per Lemma 2.3.16 together with (3.5.69) and (3.5.68) then
yield the following results.
Corollary 3.5.21. If 2 > Ny(5), where Ny is defined by (3.5.8), and x satisfies

(8.5.62) then for N>z and 9 € [0.,7 — 9. — 6r] we have

V@ + 65) — V(I) > ng. (3.5.69)
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In particular,
V(ir2) > 3 Vi (3.5.70)
By (2.3.41) and (2.3.42) we also have
V(0r2) = V() < 6p wa_1sin® " Ipy,

and we have the following result.

Corollary 3.5.22. If = > Ny(5), where Ny is defined by (3.5.8), and = satisfies
(3.5.62) then for N>z we have

OF Wg—1 Sindil’ﬂF’g > gVR (3571)
The upper bound for V(¥ + §r) — V() is a little easier to analyze than the lower

bound. From (2.3.36), for 9 € [0,7 — dr] we have the crude upper bound

I+0F
V(ﬁ + (SF) - V(19) = wdfl/ sind_lf dé < wg_1 OF. (3572)
9

While crude, this bound is sufficient to prove the following estimates. Firstly, from

(3.5.20) and (3.5.72) we immediately have for Y(9) for ¢ € [0,7 — dx] the estimate

Together with (3.2.1), (3.2.3) and (3.5.2), this gives us

VW) < pwar 6] " =pway wg® NT. (3.5.73)

Secondly, we have a crude estimate for the maximum number of regions in zone
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Lemma 3.5.23. Fori <€ {0,...,N+1}, the number of regions m; in zone i of EQ(d,N)

satisfies the upper bound

1, N <2,

N

m;

N -2, N € [3,Mo(1/2)),

1—d

pu(T) wi—1 w,? NT +1, N>z>Ny(1/2).

As a result, we have the estimate
m; <mg = Coq N7, (3.5.74)
where
Cova += max (No(1/2)% — 2 No(1/2)'F*, prr (No(1/2)) was Wy 4 ). (3.5.75)

3.5.8 Bounds

As a consequence of Theorem 3.3.2 (the isodiametric inequality), the following result
on diameter bounds for the polar cap is not needed for the proof of Theorem 3.1.3.
It is included for completeness, and for comparison to the Feige—Schechtman bound
to be examined below.

As an immediate consequence of Lemma 3.5.14 we have the following upper

bound for the diameter of a polar cap of EQ(d, N).

Lemma 3.5.24. Ford>1 and N > 2, the diameter of each polar cap of EQ(d,N) is

bounded above by K.N~1, where

K.i=2 <“’d d>d. (3.5.76)

The following two bounds are used in the proof of Theorem 3.1.3.

Lemma 3.5.25. For d > 1, there is a positive constant Na € N and a monotonic

decreasing positive real function Ka such that for each partition EQ(d,N) with
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./V'>17>NA,

-

mﬂgmxA < Ka(z)N 4.

Lemma 3.5.26. For d > 1, there is a positive constant Np € N and a monotonic
decreasing positive real function Cp such that for each partition EQ(d,N) with

N>IE>NP,

mﬂ%xP < Cp(z)N 1.

3.6  Proofs of main theorems

We first examine the equal area property.

Proof of Theorem 3.1.2.

The theorem is true for d = 1, since the recursive zonal equal area partition
algorithm partitions the circle S! into N equal segments.

We now assume that d > 1. At Step 7 of the partition algorithm, we define
zone i to be Z(9;,9,41). Using (3.2.11), the area of each polar cap is Vr and, for

i€ {l,...,n}, the area of collar i is
U(Z(ﬂi,ﬁ“_l)) = miVR.

From Lemmas 3.5.3 and 3.5.4, we know that m; is a positive integer. At Step 3.2.3
of the recursive zonal equal area partition algorithm, we recursively use EQ(d—1, m;)
to partition each collar into m; regions. Therefore, by induction, each region of the
partition EQ(d, V) has area Vg. 0

We now examine the diameter property.

Proof of Theorem 3.1.3.
The theorem is true for d = 1, with EQ(1) having diameter bound K; = 2x, since

the recursive zonal equal area partition algorithm partitions the circle S' into &



3.6. Proofs of main theorems 101

equal segments, each of arc length 27 /A, and therefore each segment has diameter
less than 27 /N.

Now assume that d > 1 and N > 2. We know from Lemma 3.5.11 that

maxdiam(d, N') < \/(In]I&»mX A)2 + K2 (m}gx P) 2.

From Lemma 3.5.25, we know that there is a positive constant N € N and a
monotonic decreasing positive real function K such that for each partition EQ(d, N)

with NV >z > NA,
m§XA < KA(x)N_é.

From Lemma 3.5.26, we know that there is a positive constant Np € N and a
monotonic decreasing positive real function Cp such that for each partition EQ(d, )

WlthN>l’>Np,

=

mﬂz)}xP < Cp(x)N ™4,

Define

Ny := max(Na, Np). (3.6.1)

Assuming that EQ(d — 1) is diameter bounded, with diameter bound &, then for

N > Ny, we have maxdiam(d, N') < KyN 4, where

KH = \/KA(NH)2+H2CP(NH)2. (362)

For d > 1 and N/ < Ny, we note that the diameter of S¢ is 2, and so the diameter

of any region is bounded by 2. Therefore for N' < Ny, maxdiam(d,N) < K N1,
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where
K, == 2N}, (3.6.3)
Finally, we see by induction that for d > 1, maxdiam(d, N') < K4N 4, where

Kd = maX(KL,KH). (364)

3.7 A per-region bound on diameter

The following bound is not needed for the proof of Theorem 3.1.3, but is useful in

checking the calculation of the diameters of individual regions.

Definition 3.7.1. The region diameter bound function db is defined on the regions
of a partition EQ(d,N') as follows.

For the whole sphere S¢,
dbS? := 2.
For a region R contained in EQ(1,N),

27
—c

where Y is defined by (2.3.2).

For d > 1, for a spherical cap R with spherical radius 9.,

dbR := 2 sin ..
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For d > 1, for a region R contained in collar i € {1,...,n} of a partition EQ(d,N)

with n collars,

dbR:= /T(5,)2 + wi(dbIIR)?,

where TIR is defined by (3.3.1).

Theorem 3.7.2. For any region R € EQ(d,N),

diamR < dbR.

3.8 Proof of Stolarsky’s assertion

Feige and Schechtman’s construction yields the following upper bound on the small-
est maximum diameter of an equal area partition of S9.
Lemma 3.8.1. [54, Lemma 21, p. 430-431]

For d > 1, N' > 2, there is a partition FS(d,N) of the unit sphere S* into N
regions, with each region R € FS(d,N) having area wys/N and Fuclidean diameter

bounded above by
diam R < Y (min(n, 8Y.)), (3.8.1)

with Y defined by (2.53.2) and 9. defined by (3.2.2).
We now use the Feige-Schechtman construction to prove Stolarsky’s assertion.

Theorem 3.8.2. [147, p. 581] For each d > 0, there is a constant cq such that for
all N >0, there is a partition of the unit sphere S* into N regions, with each region

having area wq/N and diameter at most caN 7.

Proof. For d =1, we partition the circle into equal segments and the proof is as per
the proof of Theorem 3.1.3.

For d > 1 and N = 1, there is one region of diameter 2 = 2A~a. For d > 1 and

1

N =2, there are two regions, each of diameter 2 = 2“7 N'~1.
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Otherwise we use Lemma 3.8.1 and the estimates (3.5.46) and (3.5.48). Define

o wq
Npg = V) (3.8.2)
Then for /' > Ngg,
_o (¥l T
ﬁc_e(N) < g (3.8.3)

with equality only when N = Npgs. Therefore, for ¥ > Npg, Lemmas 3.5.14 and

3.8.1 give us

max diamR <2 sin4d, <8 sind, < KFS./\/'_%7
REFS(d,N)

where

1

Kps =8 <wd d) " (3.8.4)

Wd—1

For 2 < N < Npg, we have
1
maxdiam FS(d,N) <2 =2 NiN~& <2 NI N .

Let Kpgr :=2 Nﬁs. Using (2.3.51) we have

T 1 wi—1 . g Wil . g T
Y <7) > .
“ sincE d 8 d St 8




3.9. Implementation 105

Therefore

d
<qd YT
V(%) Wd—1

(S
)

Nps =

in other words,

wdd

K¢g, =2% Npg < 8% = K.

Wd-1

We therefore have Krg; < Kpg.

For the case N = 2, from (2.3.52) we obtain

d
920+1 < 81 \/ord < 8¢ 4% _ gd
Wd—1

Therefore Theorem 3.8.2 is satisfied by c¢q = Kps. O

Remarks. The Feige—-Schechtman constant Krg thus provides an upper
bound for the minimum constant for the diameter bound of an equal
area partition of S.

Theorems 3.1.2 and 3.1.3 yield an alternate proof of Theorem 3.8.2, with

Cqg = Kd.

3.9 Implementation

The Recursive Zonal Equal Area (EQ) Sphere Partitioning Toolbox is a suite of
Matlab [154] functions. These functions are intended for use in exploring different
aspects of EQ sphere partitioning.

The functions are grouped into the following groups of tasks:

—_

. Create EQ partitions

2. Find properties of EQ partitions
3. Find properties of EQ point sets
4. Produce illustrations
5

. Test the toolbox
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6. Perform some utility function

An EQ point set is the set of centre points of the regions of an EQ partition.
Each region is defined as a product of intervals in spherical polar coordinates. The
centre point of a region is defined via the centre points of each interval, with the
exception of spherical caps and their descendants, where the centre point is defined
using the centre of the spherical cap.

The toolbox has been tested with Matlab versions 6.5 and 7.0.1 on Linux, and

6.5.1 on Windows.

3.9.1 Implementation of the functions V and ©

For d < 2, the area function V,(¢) uses the closed solution to the integral (2.3.36),
and for d > 3 the area function uses the Matlab [154] function BETAINC to evaluate
the regularized incomplete Beta function I of Lemma 2.3.15. For d = 3 the area
function uses the closed solution for 6 € [r/6,57/6] and otherwise uses BETAINC.
The inverse function ©4(v) uses the closed solution to the inverse for d < 2, and
otherwise uses the Matlab [154] function FZERO to find the solution. This loses
some accuracy for area arguments v near zero. In future, the inverse function may

instead be based on an implementation of the inverse Beta distribution algorithm

of Abernathy and Smith [1].

3.9.2 Limitations

Ultimately, the Matlab code is limited by the speed of the processor and the amount
of memory available.
Any function which has dim as a parameter will work for any integer dim > 1.
Any function which takes N as an argument will work with any positive integer
value of N, but for very large N , the function may be slow, or may consume large

amounts of memory.
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3.10 Numerical results

3.10.1 Mazimum diameters of regions

Figures 3.4, 3.5 and 3.6 are log-log plots corresponding to the recursive zonal equal
area partitions of S§? for d = 2, d = 3 and d = 4 respectively. For each partition
EQ(d,N), for N from 1 to 100000, each figure shows the coefficients corresponding to
the maximum per-region upper bound on diameter, as per Definition 3.7.1, depicted
as red dots, and the maximum vertex diameter, depicted as blue + signs. Each of

these coefficients is obtained by multiplying the corresponding diameter bound by

1
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Figure 3.4: Maximum diameters of EQ(2,N) (log-log scale)

The vertex diameter of a region is the maximum distance between pseudo-
vertices of a region, except where a region spans 27 in longitude, in which case
one of each pair of coincident pseudo-vertices is replaced by a point with the same
colatitudes and a longitude increased by 7. For low dimensions and for regions which
do not straddle the equator, the vertex diameter provides a good lower bound on
the diameter.

Only the upper and lower bounds on the maximum diameter are plotted, rather

than the maximum diameter itself. This is because, for each region of each partition,
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the diameter is the solution of a constrained nonlinear optimization problem. It

would therefore take quite a long time to calculate the maximum diameter of every

partition for & from 1 to 100 000.

The black curve on each figure is the Feige-Schechtman bound (3.8.1). On each

figure, this curve joins a straight line for which the maximum diameter of a region

is 2.
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Figures 3.4, 3.5 and 3.6 show that for A’ < 100000, we have maxdiam(2, N)A'z < 6.5,
maxdiam (3, N)AV'/? < 7 and maxdiam(4, N)NV/* < 7.5 respectively. Figure 3.7 is a log-
log plot corresponding to the partitions EQ(d, 2), for d from 2 to 8, for & from 1 to
20. The figure shows the coefficient obtained by multiplying A by the maximum
per-region upper bound on diameter, as per Definition 3.7.1, depicted as red dots,
and by the maximum vertex diameter, depicted as blue + signs. For the cases

shown, we have 2¢ maxdiam(d, 2¥) < 8.
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Figure 3.7: Maximum diameters of EQ(d,N), d from 2 to 8 (log-log scale)

3.10.2 Running time

To benchmark the speed of the partition algorithm, the function
eq._regions(d,N) was run for d from 1 to 11 and N from 2 to 2?2 = 4194304, in
successive powers of 2, on a 2 GHz AMD Opteron processor, using Matlab 7.01
[154]. The benchmark was repeated a total of three times. For d from 2 to 11 and

N from 8 to 222, the running time ¢ was approximately

t(d, N) = (0.24 £ 0.04) g'-00£0-07 AfO-60£0.01 g,
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with the error bounds having 95% confidence level. Thus for this range of d and
N, the running time of the partition algorithm is approximately O(N%6), which is

faster than linear in V.

3.11 Remaining proofs

3.11.1 The regions of a recursive zonal equal area partition

The following lemmas show that the diameter of a region of an EQ partition is
attained by the maximum Euclidean distance between two points of the region.
The proofs are entirely elementary — in fact almost obvious — and are included only
for the sake of completeness.

Lemma 3.11.1. Fach R € EQ(d,N) is closed in the topology of S induced by the

Fuclidean metric in R+,

Proof. Since, from (3.2.12) each R € EQ(d,N) is described as the product of closed
intervals in spherical polar coordinates, R is closed in the topology of S¢ induced by

the Euclidean metric in R4+, O

Lemma 3.11.2. For each R € EQ(d,N), there are two points a,b € R such that the

diameter of R is ||la—b||.

Proof. The diameter of R is the supremum of the Euclidean distance in R4+ between
pairs of points of R € §%.

Since, as a result of Lemma 3.11.1, R is closed, the diameter of R is the maximum
Euclidean distance in R4+ between pairs of points of R. That is, there are two points

a,b € R such that the diameter of R is ||a — b|. O

The proof of Lemma 3.3.1 depends on the following elementary results.
Lemma 3.11.3. For any closed subset R of S, either

e the diameter of R is 2 and R contains a pair of antipodal points, or
e there are two points, p,q € OR, the boundary of R, such that the diameter of R

15 the Euclidean distance |p — q|-
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Proof. The diameter of R is the maximum of the Euclidean distance in R¢*+! between
pairs of points of R € §¢, since R is closed. That is, there are two points p,q € R such
that the diameter of R is ||p — q]|.

Now consider any two points, a,b € R. If a is an interior point of R, then either
la — b|| = 2, which is the maximum possible distance, and a and b are antipodal, or
there is a point ¢ of R in a neighbourhood of a with ||c —b|| > |la — b]|.

To see this, take a geodesic between a and b and extend it through any neigh-
bourhood of b which is contained in R. Now recall from Lemma 2.3.2 that Euclidean
distance is a monotonic increasing function of spherical distance, and that spherical

distance is the same as geodesic arc length, up to . O

Corollary 3.11.4. The diameter of an arc C of S*, with end points a and b, is the
Fuclidean distance between a and b, if the arc length of C is less than =. Otherwise,

the Fuclidean diameter of C is 2.

Proof of Lemma 3.5.1.

Since we have d > 1 and N > 1, we know that the EQ algorithm yields two polar
caps, both with spherical radius ., and therefore we know that 9. < %.

Let R be the North polar cap with colatitude ¢.. From Lemma 3.11.3, we see
that either R contains a pair of antipodal points or there are points p,q € 9R such
that the diameter of R is ||p —q|

Since Y. < %, then any point a € R is of the form

a=0(s,...,9) = (z1,...,cos?),

where ¥ < 9. < . The antipodal point, —a is therefore —a = (—z1,...,—cos?). But
we know that —cosd = cos(r — ), but then 7 — ¢ > 7 -9, > 3.

If 9. < Z, then —a is not contained in R, and R does not contain pairs of antipodal
points. If ¥. = Z, then R contains pairs of antipodal points, which are all boundary

points. So there must be points p,q € dR such that the diameter of R is ||p — q.
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Now recall that dR is the parallel at colatitude ., which is a small sphere of
Euclidean radius sind,. and Euclidean diameter 2sin9..

The analysis of the South polar cap is almost identical. O

Proof of Lemma 3.3.4.

For any a,b,c € R¥*! we have

la = c|® + llc = b* — la=b|* = (a—¢) - (a~¢) + (c = b) - (¢ =b) — (a—b) - (a—b)

=2a-b—2a-c—2c-b+2c-c=2(a—c)-(b—c).

We therefore prove Lemma 3.3.4 by proving that (a—c)-(b—c)>0.

First, note that rotations of S? are isometries and therefore without loss of
generality we may rotate the triangle acb to make calculation more convenient. Now
note that we can apply a single S%~! rotation to S while keeping the S? colatitude

fixed. Therefore we can assume that

a=®(0,...,0,0,4), b=0(0,...,0,C,B), c=(0,...,0,0,B).

In Cartesian coordinates, for d > 3, we obtain

a=1(0,...,0,0,sin A, cos A),
b =(0,...,0,sin B sin C,sin B cos C, cos B),

c=(0,...,0,0,sin B, cos B).

Due to an unfortunate feature of the conventional mapping from spherical to Carte-

sian coordinates, for S? ¢ R?, we obtain

a=(sind,0,cosA), b= (sinB cosC,sinB sinC,cos B), ¢ = (sinB,0,cosB),
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and for S* ¢ R*, we obtain

a=(0,0,sinA4,cos A), b= (sinB sinC,0,sin B cosC,cos B), ¢ = (0,0,sinB,cos B).

In all three cases, we obtain

(a—c)-(b—c)=(sinA — sin B)(sin B cos C — sin B) + (0)(sin B sin C') + (cos A — cos B)(0)

= (sinB —sinA) (1 —cosC) sinB > 0.

To prove Lemma 3.3.5 we use the following results.

Lemma 3.11.5. Let a, ¢ be points of region R in collar i of EQ(d,N'), which addi-

tionally satisfy (3.3.2) with sin B > sin A, that is,

R=R((m,. -, 74-1,75), (1, ..., v4-1,Pi41))),
a—= @((){1,0&27. .. ,O(d_l,A), C = @(Oq,Oég, .. .,Oéd_l,B),

ay € [m,ve], ke {l,...,d—1}, A ,Be[¥;,911], sinB >sinA.

We then have ||a—c|| < Y(8;) < &;, where §; is given by (3.3.3).

Proof. Since a and c differ only in colatitude we have

s(a, C) = |B — A| < 19i+1 — 191 = (52

Using Lemma 2.3.2 we note that the function T increases monotonically with

spherical distance, and for all § € (0, 7] we have Y(9) < 6. Therefore

la—c| =7 (s(a,c)) < T(6) < é.
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Lemma 3.11.6. Let b, c be points of region R in collar i of EQ(d,N), which addi-

tionally satisfy (3.5.2), that is,

R=R((r,.-,7a—1,%), (V1,...,va-1,9i11))),
b = ®(6l7ﬂ2a s 76d—17B)7 Cc= @(@1,0&2,. .. 7ad—17B)7
ok, B € [ty vp) k€ {1,...,d—1}, B € [i,0i41].
We then have |c —b| < w; diamIIR, where w; is given by (3.3.4).

Proof. The points b and ¢ both have colatitude B. Using the spherical polar co-
ordinates of b and ¢ and the mappings ® and II we see that if IIb = (b,...,0)

then

b = (sin B b},...,sin B b/, cos B),

and similarly for point c. It follows that ||c — b|| =sin B e(Ilc,IIb).
Since II(b),I1(c) € IR, the Euclidean distance e(Il(c),1 (b)) is bounded by the

diameter of IIR, so we have |c — b|| < sin B diamIIR. Since B € [¢;,3;41],

sinB<w; = max siné.
E€¥,9i41]

We therefore have |c — bl < w; diamIIR. O

We now use these results to prove Lemma 3.3.5.

Proof of Lemma 3.3.5.

Let a,b be points of region R such that ||a —b|| = diam R and let

a=0(a,a,...,0q4-1,4), b=0(01,02,...,04-1,B),

with sin B > sin A. Now define ¢ := ©(ay, as,...,aq_1, B).
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By Lemmas 3.11.5, 3.11.6, 2.3.2 and 3.3.4, we then have

diam R = a— b < \/a—¢|* + [l — b]

< \/T(él-)Q + w?(diamITR)? < \/53 + w?(diam ITR)2.

3.11.2 A continuous model of the partition algorithm

Rounding the number of collars.

Proof of Lemma 3.5.1.
Assume that & > 2 and n; > 1. Therefore, using (3.5.1) and (3.5.4) we have

Lone(io Loyt
p ng 2n;’ o2ny |-

Therefore

pE

1 1 2n1 2n1 1 1
1 1 = ) =|1- 71+ .
1+ 1— =~ 2n;+1"2n;—1 2n; +1 2ny — 1

2n1 2n1

Proof of Lemma 3.5.2.

In order,

1. We calculate
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3. We take the derivative of v and obtain

Using the chain rule and inverse function theorem, we have

w w B —wg 2 —wgq 2
Q@ (l) = DO (f) (—wq)z ™2 = v (g @) = o Sir(li (@ (;)d) <0

for 2 > 2. We also know that 20(wgs/z) < « for x > 2. Therefore Dv(z) > 0 and

v(z) is monotonically increasing in z for = > 2.

Rounding the number of regions in a collar.

Proof of Lemma 3.5.5.
To prove (3.5.13), first use (3.2.9) and (3.2.8) to show that for k € {1,...,n}

a ~ V(0rkt1)
Sy= W)
i=1 VR

Then use (3.2.8), (3.2.7) and (3.2.4) to show that
Vpnt1 =9 +ndp =7 —Je.

Therefore, by (2.3.44),

V(VFnt1) _wi—Vr

—N -1
Vr Vr N




3.11. Remaining proofs 117

For (3.5.14), recall from Definition 3.2.10 that a¢ = 0 and for i € {1,...,n},

i i—1
ai = (yj—my) = (yj—my)+yi—mi=a;1+y; —m,.
j=1 j=1

The result (3.5.14) follows immediately.
For (3.5.15), recalling (3.2.9) we have

1—1
V(ri) = V(rn) V(ri) = V(@)  V(OF)
1+ yj=1+ Y =1+ v =
Jj=1

where we have used (3.2.8) and (3.2.2). Using Definition 3.2.10 again, we have for

ief{l,...,n+1},

V(’l?Fy,L) i—1 i—1
Vi :1+Zyj:1+ ij —ai-1,
j=1 j=1
SO
i—1
V(ﬁpyi) =11+ Z m; | —a;—1 Vi = V(i?l) —a;_1Vg,
j=1

where we have used (3.2.11). The result (3.5.15) follows.
Finally, by (3.2.9), (3.5.14) and (3.5.15), for i € {1,...,n},

V(19¢+1) — V(ﬁl) = V(19F’¢+1) +a;Vgr — V(ﬁp,i) —a;,-1Vr

=V(pit1) —V(0r;) + (a; —ai—1)Vr = (Yi +a; —a;—1)Vr = m;.

Proof of Lemma 3.5.4.
Using Definition 3.2.10, define z; :==y; +a;_;.
We first prove (3.5.18). By Definition 3.2.10, we have for i € {1,...,n},

a; = a;—1 + (Yi — mi) =Yy; taj_1— round(yi + ai_l) =2z; — round(zi).
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Since y; > 1, if a;_; > —1 then z; >0, so then a; € [-3,1). But we have ay =0, so the
result follows by induction.

We now prove (3.5.17). For i € {1,...,n}, by the analysis above, we have m; =
round(z;) and z; >0, so m; € Ng. Also, since ag =0, we have m; > 0, so m; € N.

We can now prove (3.5.19). We have, by Definition 3.2.10,

n

an =Y (yj—m) =Yy, — Y me
j=1 j=1

j=1

We know from (3.5.18) that a, € [-1,1), so we must have a, = 0. Now, by Lemma

3.5.3, we have for i € {1,...,n},

Yi— M =a; —aj—1,
so for i € {2,...,n—1}, by (3.5.18),

Yi—m; =a; —a;—1,€ (—17 1), and

c 11
— My = a1 —adp = a _— =
Y1 1 1 0 1 29 )

and by (3.5.18),
( 1 1]
Yp— My =ap —an—1 = —ap_1 € | —=,=1,

since a,, = 0. O

Proof of Lemma 3.5.5.

To prove property 1, suppose that m is symmetric and n is even. Then

n n L
N—Z:Zyj:ij:2ij€2Z,
Jj=1 J=1 j=1

by Lemma 3.5.4, so N must be even.
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To prove property 2, assume that the sequence m is symmetric. That is, m; =

mn_i+1 for i € {1,...,L}. Using (3.5.14) we have

a; =a;—1+Yy;—my,

An—i+1 = An—i T Yn—it1 — Mn—it1,

for i € {1,...,n—1}. If we subtract and rearrange, we obtain, for i € {1,...,L}

A —An—i+1 = Ai—1 — An—i T Yi — Yn—i+1 T Mp_j11 — My,
a; —an—i4+1 = di;—1 — An—i,

a; +an—; =ai—1+ an—it+1.

Therefore for i € {1,...,L}, if a;_; +a,_i41 = 0 then a; +a,_;, = 0. But by (3.2.10)
ap =0, and by (3.5.19) a, = 0. So, by induction, a; +a,_; =0 for i € {0,..., L}.

To prove property 3, for some p € {0,...,L} assume that the sequence m is
symmetric up to m,. That is, m; = m,_;; for i € {1,...,p}. By an argument similar

to that for property 2, we can show that a, +a,_, = 0. Using (3.5.14) we have

dp+1 = dp + Yp4+1 — Mpy1, dn—p = An—p-1 + Yn—p — Mn_p.

If we subtract and rearrange, we then obtain

Ap+1 ~aAn—p =3 —A—p-1 T Ypt1 — Yn—p t Mnp — Mpy1,
Ap+1 +aAn—p—1 = 3p + An—p + Yp+1 — ¥Yn—p + Mp—p — Mp11,

Ap+1 T aAn—p—1 = Mn—p — Mp41,

since the sequence y is symmetric.
From (3.5.18) we know that a,4i +am—p—1 € [-1,1), and from (3.5.17) we know

that m,_, — m,;; € Z. There are therefore only two cases:
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1. If mo_p —mpi1 = aps1 +an—p-1 = —1, then m is not symmetric, and by (3.5.18),

Ap+1 = An—p—1 = — 3

2. If my_p —mpi1 = api1 +an—p—1 =0, then m is symmetric up to my,.

Property 3 now follows by induction on p. 0J

Functions which model the regions in a collar.

Proof of Lemma 3.5.6.

In order,

1. Using (3.2.9) we obtain,

V(Ipi) = V(Or,; + 55})% —V(Ir;) _ V(ﬁF,iJrl)))R_ V(Vr,:) .

2. Using (3.5.15) we have,

T(fai_l,’ﬂpvi) = @(V(ﬁpﬂ) + ai_l]/R) = @(V(l%)) = 1.

3. Again using (3.5.15) we have,

B(ai,ﬁpﬂ') = @(V(ﬁp72 + 5F) + CLiVR) = G(V('&F,H—l) + aZ'VR) =it1.

4. Another use of (3.5.15), together with (3.5.16) yields

V(Orit1) = V()

M(—a;-1,3,9p,) = Y(Ori) —ai—1+a; = —aj_1+a;
Vr
_VYWriy1) o V0ri) _ _ V(@0ip) V()
- VR + a; VR aAi—1 = VR = m;.

5. Using (3.5.29), (3.5.28) and (3.3.3), we have

A(_az?l»aiaﬁF,i) = B(az‘,ﬂF,i) - T(_aiflaﬁF,i) = ?9¢+1 — U = 0;.
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6. Using (3.5.29), (3.5.28) and (3.3.4) we have

W(—aj_1,a;,9p,) =

max sin€ = max sin€ =w;.
E€[T(—ai—1,9F,:),B(ai,9F,:)] €[V, 9i41]

7. Finally, using (3.5.30) and (3.5.32) we have

1

1 i—a
P(—ai—1,3;,0r;) = W(—ai—1,3;, ;) M(—aj—1,2;,9p;) -7 =w;m, " = p,.

i

O
Symmetries of the continuous analogs.
Proof of Lemma 3.5.7.
Using (2.3.44), we have
i — ) = V(w—19+55) “V(r=9) _ wa= V0O —br) —eat V@) _ 0 g
R Vr
O

Proof of Lemma 3.5.8.
Using (2.3.46), we have

T(r,r=9)=0V(r —9) —7Vg) = O (wg — V(I) — 7VR)

=71 — O VW) +1Vg) =7 — B(r,0 — 6p),

and so

B(B,m—9) =B(B, (1 —9+6p) —0p) =7 — T (B,m — (1 — 9+ 06p)) =1 — T (8,9 — 6p).
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Proof of Lemma 3.5.9.

For M, we have

M, B ==Y - +7+ =Y —0F)+B+7=M(B,7,9 —0F).

For A, we have

Alr,B,m =) =BB,nm—9)—T(r,m—9) =7 —T(3,9 —p) — 7+ B(1,9 — oF)

= A(ﬁaTaﬁ_aF)'

For w, first note that

sin7 (r,7 —9) = sin(r — B(r,9 — §p)) = sin B(r,9 — dp)

and similarly

sin B(G, 7 —9) =sinT (8,9 — dp).

Now recall from (3.5.25) that

W(r, 3,9) = max sin ¢,
(r.5,9) EE[T (1,9),8(8,9)] .

SO

W(r, B, m —9) siné, =

= max S
¢eln—B(r,9—6F),n—T(8,9—0F)]

in&

= max
EE[T (7,m—0),B(B,m—9)]

= max sin(m — &) = max sin &
£elT(B,9—6r),B(T,9—6F)] e[T(B,9—6r),B(1,9—br)]

= W(B, 7,9 — 0p).
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For P, we have

P(r, 8,7 —0) = W(r, 3,7 —0) M(r, B, 7 = 9) 77 = W(B,7,9 — 5p) M(B, 7,0 — 6p) T

:Ip(ﬂvTvﬁféF)'

Feasible domains.

Proof of Lemma 3.5.11.

Assume that d > 1 and /' > 2 and that EQ(d — 1) has diameter bound x. From
Corollary 3.3.3 we see that we need only consider the regions of EQ(d, V') which are
contained in collars.

For D as per Definition 3.5.10, if i € {1,...,n}, where n is the number of collars
in EQ(d,N), Lemma 3.5.4 ensures that (—a;_1,a;,9x;) € D.

We therefore have the inequality

*i—;ivﬂig 3719:
epex  f(maionandn) < max  f(7,5,9) = max f

for any f defined on D. Lemma 3.5.6 and (3.4.2) then imply the current result. [

Symmetries of the feasible domain D.

Proof of Lemma 3.5.12.

Assume that (7,3,9) € D_. From Lemma 3.5.9 we know that

f(r,8,9) = f(B,7,m — ¢ —dF),

so we have f(r',3,9) = f(r,3,9) where

=30 =7 and ¥ :=1-9-Fp.
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For D,,_, we have ¥ € [Z — %&£, 7 — 9. — 26p]. Then (+/,8,9') € Dpyy, since 1—9—6p €
[19F’27 g - %] °

For D,, we have ¥ = 7 — 9. — §r. Then (7', 3,9') € Dy, since 7 — 9 — 6 = V.. O
FEstimates.

Proof of Lemma 3.5.14.

For z > 2 let
L é B Wy
f(z):=2d7sin® (—x ) )

Then f(N) = Nisind,. Since O(v) >0 for v > 0 we see that f(z) > 0.
We now compute the derivative

%f(x)d =sin?© (ﬁ) + xa% sin? © (ﬂ)

x €T

—=sin? © (%) +z d sin® 'O (%) cos © (%) 3@ (ﬂ> .

ox T

Using the inverse function theorem, we have

9 (ﬁ) ___ 1 9 (%) _ —wd
or  \z DV (O (<)) dz \ 22wg_1sin? ! © (L)’
SO

(,%f(x)d = sin? © (ﬁ) _ wad cos © (%) .

T Wg—1 T

From (2.3.50), for z > 2 we have

. d
Wy  wg_1sin?O (¥

d cos© (¥

o

,)’

N

SO

d
0< wd cos © (ﬁ) < sin?© (ﬂ)
Wi—1 T T T
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and therefore
9 d
%f (z)* >0,

which implies that f(z) is monotonically increasing in x for = > 2.

On the other hand (2.2.6) and (3.5.46) result in the estimate

f(x) =27 sin® (ﬁ) c [Jc(y),Jc(y)%] (Wd d)zli

X Wd—1

for z >y > 2, with J.(y) /' 1 as y — oo. Therefore

o (). (29)'
z Wd—1
as  — oo. The results (3.5.47) and (3.5.48) follow.

Proof of Lemma 3.5.15.
For N > 2, the EQ algorithm at (3.2.5) defines

n = max (1, round (ny)),

125

For N > Ny(1/2), Lemma 3.5.2 implies that Ap(1/2) > 2 and (3.5.9) gives us n; > 1.

Together with (3.2.5), this implies that

for N > Ny(1/2).
From (3.2.4) we have

T — 20,
5

ny =

(3.11.1)
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From the estimate (3.5.46) we have

From (2.3.56) we have

and so

2 B or S or
O
Proof of Lemma 3.5.16.
If « < L& then
10 5
Se-D<3 (3.11.2)
By Lemma 3.5.2, if # > My (5) then v(z) > 5 so that
m wq 5 wq é
s-o(*) =2 ()" (3.11.3)

Also, by (3.5.11) we have pg(z) < 2.

have
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Proof of Lemma 3.5.17.
The result follows from (2.3.57), since both Jp gy, (z) / 1 and pr(z) /1 as

T — 00. O

Proof of Lemma 3.5.18.
The result follows from (2.3.58) and Lemma 3.5.17, since both Jps(z) 1 and

pr(x) /1 as ¢ — oo. O

Proof of Lemma 3.5.19.
We have z > Ny(5) and 1+n < 2. By Lemma 3.5.16 the condition (3.5.55) holds
for . = 1 +n and we can therefore apply the lower estimate of (3.5.58).

By (2.3.47), (3.5.46), (3.5.58) and (3.5.62) we now have

1\ d
_ Wa—1\ 4 3
Ve +00r) = VW) > i (@) 1(1+an<x> (=) ) Vi > Vi,

Proof of Corollary 3.5.20.
For ¥ € [9., 2 — %], the result follows immediately from (3.5.65) and (3.5.66).
Otherwise, let 9 := 7 —ndp — 9. Then for ¥ € (£ —n%E, 7 — 9. —nér] we have

V€ [V, % —n°t]. Using Lemma 2.3.16 we then have

V(0 +ndr) — V(9) = V(x — ) = V(x — 1o —0) = wa — V() — wa + V(D + ndr)

Proof of Lemma 3.5.23.
We have my = 1. For N =2, m; = 1, the single region of the south polar cap. For

N >1 we have N7 > 1.
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For NV € [3,MVy(1/2)), using (3.2.5), Lemma 3.5.2 and (3.5.8) we see that we have

one collar containing NV — 2 regions. For A € (2, NVy(1/2)) we have

(/\/0(1/2)% —9 No(l/z)l;dd) NT > (N% —2 N¥) N =N -2
For N > = > Ny(1/2) we use (3.5.10), (3.5.11), Definition 3.5.10, (3.5.23), (3.5.30)

and (3.5.73) to show that for i € {1,...,n} we have

1—d

——a d—1
m; <pwi—1 w,? N @ +1

1—d

< pu(T) wi—1 wy* N + 1.

From (3.5.12) we know that py(z) < pu(No(1/2)) for = > Ny(1/2). We therefore have

1—d

1—-d —1 1—-d —1 —1
pH (%) wi—1 wy? NT 1< pr(No(1/2)) wa—1 wy? NT N

Bounds.

Proof of Lemma 3.5.24.

Assume that d > 1 and N > 1. From Lemma 3.3.1, we know that the diameter
of each of the polar caps of the partition EQ(d,N) is 2sind., where ¥, is defined by
(3.2.2). From (3.5.48) we have the estimate

=

1
d
2sind, < 2 (wd d) N7,

Wd—1
for N>z >2. O

Proof of Lemma 3.5.25.
Throughout this proof, we assume that N > = where = > N(5), with NG defined

by (3.5.8), so that n > 5. Using Corollary 3.5.13, we also assume that (r,3,9) € Dy.
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For the top collar, (r,8,9) € Dy, (3.5.38) gives r =0, g € [-3,1], ¥ = ¥.. Using

Lemma 2.3.16 we have

V (B3, 0.)) = V00 + 67) + Vi < V(i +08) + 2
Since n > 5, we have 9, + 0p € [J., 7 — ¥ — ndr], and we can use (3.5.67) to obtain

V(B(3,9.)) < V(I +0p) + % < V(¥ + (1 +n)dp).
Therefore, using Lemma 2.3.16 again, we have

B(B,9.) < V. + (1 +n)dF. (3.11.4)
Therefore (3.5.21) and (3.5.24) yield
A(r, 8,9) = A(0, 8,9c) = B(B,0e) — T(0,9c) = B(B,9c) — de < (14 n)dF.

For (r,B3,9) € Dy (3.5.44) gives 7 € [-3,3], B€ [-4,%], ¥ € [9pa, T — %] Since

n>5, we have ¥ + 0 € [J., 7 — 9. — ndr], since

s
5

3
19C+§5F<19¢+25F< 5

yielding
™ 6F
19+5F<§+7 <7T—19C—5F.

Using Lemma 2.3.16, (3.5.22) and (3.5.67) we now have

V(B(B,9)) =V +6r) + BVr < V(U + 6p) + % <V + (1 +n)dF).
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Using Lemma 2.3.16 again, we therefore have
B(8,9) <9+ (1+1)0r. (3.11.5)
Since ¥ — nép > Y., using Lemma 2.3.16, (3.5.21) and (3.5.67) we also have
V(T(7,9) = V() + 7V > VI9) ~ 2 > V(0 — di),
so that
9 — o < T(r,9). (3.11.6)
Combining (3.11.5) and (3.11.6), and using (3.5.24) we therefore have

A(r, 8,9) = B(3,9) — T(r,9) < (1 + 2n)0p.

The estimate (3.5.52) now yields

-

A(1,8,9) < Ka(z)N ™4,
where
Ka(z):=(1+2n) pu(z) wd%, (3.11.7)

with px(z) defined by (3.5.11).

We also have
Ka(z) \ Ka(00) == (1+21) w (3.11.8)

as z — oo, since py(z) \, 1 as  — oo, by (3.5.12). O



3.11. Remaining proofs 131

Proof of Lemma 3.5.26.
Throughout this proof, we assume that ' > x where z > Ny(5), with Aj defined
by (3.5.8), and z satisfies (3.5.62) and (3.5.63). Lemma 3.5.18 assures us that such

an r exists. As a consequence, we have at least 5 collars,
ny>5 n>5, (3.11.9)

and (3.5.69) and (3.5.71) are satisfied. We also use Corollary 3.5.13, and assume
that (r,3,9) € Dy. The reasons for assuming that = satisfies (3.5.62) and (3.5.63)
will become clear in the course of the proof.

Within this proof, we use the abbreviation
vy:=14mn, (3.11.10)

where 7 is defined by (3.5.61).
We now divide D, into D, and D,,, as per (3.5.38) and (3.5.44), and we examine

D, first.

Bounds for P in Dj.
For the top collar, (r,3,9) € Dy, (3.5.38) gives r =0, 3 € [-1,1], ¥ = ¥.. Therefore,

in D;, we consider

where

,V\[? =W 07 3190 = max sin ’
(8) (0,8,9c) E€[T(0,9.),B(B,9:)] <

V(¥r2) — V()

M(B) i= M(O,5,0) = =4

+ .

We made weaker assumptions for A and « for the analysis of D; in the proof of

Lemma 3.5.25, in particular, we assumed there as we do here that x is large enough
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that (3.11.9) holds. We therefore see that (3.11.4) holds here, so that the top collar
is completely contained in the Northern hemisphere, in other words, B(8,9.) < 5.

We therefore have

W(B) = sin B(8,9.).

As a consequence,

1
i—d

P(B) = sin B(3,9.) (V(izz) -l ﬂ)
_ sin@(V(ﬂFﬂ) + BVR) (1}(]1322) -1+ ﬂ) fer

=sinO((s+ B)Vgr) (s + 8 — )T,

where

5= Y0F2). (3.11.11)
Vr

By (3.5.38) and (3.5.70) we have g8 > -3 and s > 9/2. Therefore s+ -1 > 3. Also,
O((s+A)Vr) = B(B,9.) < 5.
Applying (2.2.6), (2.3.48) and (3.5.56) we now have 0 < P(8) < Q(3), where

Q(B) ==r(x)(s+ B)7 (s + B—1)T7 & (3.11.12)

and

(3.11.13)

I
7N
QU
~_
al=

r(x) == Jp g () 7 o
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This estimate requires that

() +r o (2)' <

xT

(3.11.14)

[V

Since pg(z) \, 1 as  — oo, the expression on the left of (3.11.14) is positive and
monotonic decreasing in z, and so this condition holds for z sufficiently large.

Since Jp o1 (x) /1 as @ — oo, We see that

N )‘11 (3.11.15)

Wd—1

as r — oo.

To determine whether Q(3) is monotonic in 3, we compute

26?21(6) =r(z) <1(s+ﬂ)ldd(s+5 1)

= y s+ s+ - 1) &

d—1
~ 1 1
W) (a5~ @6 T5-)

= —d—s—pF+1
*Q(ﬁ)d (d=1)(s+B)(s+5—-1)

<0,

since d > 2, s > 9/2, 3 > —%. The maximum of Q(3) therefore occurs when g = —1.
) ) 2 2

Therefore

PB) <O <_1>. (3.11.16)

Estimate for D;.

From (3.5.58) and (3.11.11) we see that s € [s;2,sm2] and therefore (3.11.16)

yields
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Using (3.5.60) and (3.11.15) we see that

as r — o0.

Assuming that N >z > Ny(5), where Aj is defined by (3.5.8), and that = satisfies

(3.5.62), (3.5.63) and (3.11.14), the resulting estimate is then

P(B) < Ci(x)N 1,

=

where
Colz) == r() (SH,Q(x) - ;) : <sL,2(x) - 2) o wi, (3.11.17)
with
Cu(2) . Co(o0) i= (wj_lf (32 - ;) ’ (32 - 2) o Wi (3.11.18)
as r — oo.

Bounds for P in Dy, .

In the following arguments the notation suppresses the explicit dependence of

various functions on 7 and 3, wherever sensible.

By (3.5.22), (3.5.68) and (3.5.67), for ¥ € [9p2, T — °£] we have

V(B(5,9) = V(0 +55) + BV < V(I + 55) + 22

<V(O+ (L+n)dp) = V(I +v6F).

Therefore by Lemma 2.3.16, we have B(3,9) <9 + vér.
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If ¥ € [¥p2, 5 —0r), then for ¢ € [T(r,9),B(8,9)], we have

siné < sin(¥ + vop),

and therefore W(¥9) < sin(¥ + vdr).

Motivated by (3.11.25), define

Dt = {(7.8,9) € Dt |9 < 5 =705},

DmH = {(7-75719) € ]D)m-‘r ‘ v > I _7517}7

[\)

Since we have n > 5, we have

]
Vpo =040 < = —20p < - —70r < r

N w

0ol
0ol

Therefore both D,,; and D,z are non-empty.

The domain D,,r.

For D,,;, we have 9 € [p2, 5 —~vdr]. Define

1

Q) := sin(d + y0p) M(J)T=4
We then have, for ¥ € [9g2, F — 7dF],
P(0) < Q).
From (2.3.42) we know that for ¥ € [0, Z — 5],

V(0 +6r) — V() € [DV(I), DV(I + F)] O,

Tr_or
2 27

135

(3.11.19)

(3.11.20)

(3.11.21)

(3.11.22)

(3.11.23)
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and therefore, from (3.5.20) and (3.5.23)

V() € [DV(9), DV(I + 6r)] %
and
M) = 5—FDV(19) +7+0
Vr
Now define
G(¥) :=sin(¢ + voF) (;S/FDV(ﬂ) +T+ﬁ>1d , (3.11.24)
R
Then, since 67 < 76, we have, for ¥ € [¥52, Z — vor],
QW) < G(¥). (3.11.25)
We use the abbreviation
X = 67Fwd717 (31126)
VR
and define
S(9) = sin® (9 +~voF) (xsin? ' 0 — 1)_1 : (3.11.27)

By (3.5.71) we have

5
X sin? 'y —1> X Sind_lﬁp’g —-1> 3 > 0.
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From (3.5.39) we know that |7+ 3| < 1. Therefore by (2.3.41) and (2.2.6) we
have
d—1 sd—1 oF -
G =sin®" (I +voF) V—DV(@)—FT—Fﬁ
R
Vr

5 1
= sind_l(ﬂ +oF) <Fwd_1 sin® 19 + 7 + ﬁ)

<sin® MW+ v6F) (x sin?t Y — 1)_1 = S(¥). (3.11.28)

To determine if S(¥) is monotonic in ¥, we differentiate and find that

0 - 0 . d—1 sd—1 9 -1
8—195(19) = 6719(5111 (04 70p)(x sin "9 —1)7")

_ %(sind’l(ﬁ 4 y68)) (x sindt o — 1)1

+sind" (9 + 751:)% ((x sin® 19 —1)71)
= (d—1) sin? (0 +~vp) cos(9 +0p)(x sin? "ty —1)71

+sin? 10 +90F) (= (x sin® 'Y —1)72(d — 1)x sin® 29 cos¥)
=(d—1) sin® (9 +0p)(x sin?t9—1)72

(cos(ﬁ +~6p)(x sin? 19 — 1) —sin(¥ +v0p) x sin? 29 cos 19).
But
cos(9 4+ vor)(x sin? 19 — 1) —sin(d +v0p) x sin? 29 cos?

= cos(9 4 o) x sin? 29 sing —sin(d +v0p) x sin? 29 cos® — cos(V + yor)

=y sin? 29 (cos(¥ + v6p) sind — sin(J + v6F) cos V) — cos(d + v6F)

= —x sin®? ¥ sinydp — cos(¥ +yor) < 0.
So S(¥) is monotonically decreasing with ¢ in the domain D,,;. Therefore

SW) < S(Wp2). (3.11.29)
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Finally, using (3.11.22), (3.11.25), (3.11.28) and (3.11.29) we have
P(9) < S(Pr2) ™.

Estimate for D,,r.

From (3.11.27) we obtain

1

P9) < S(Wp2)TT = sin(Ip,34) (xsin? " 9o —1)77

< Vp (a4 (xsin " Ipp — 1) 77

) 1 =
= 19 1-d Sin'l9 -1 1 _ .
F@3+mX 7 (sindr2) ( R )

Motivated by (3.5.57) define

1

L(x) := Jra(x) ((wj_1>d + pL(x)> (3.11.30)

so that sin¥ps > L(z)d;. This estimate requires that
Wy wq % ™
O (%) +on@ ()" <3

This is implied by the stronger condition (3.11.14), which we assume from here

onwards. Since Jpa(z) /1 and pr(z) /1 as z — oo, we have

L(z) /' L(c) = ( d )é +1 (3.11.31)

Wd—1

as r — oo.

Recall from (3.11.26) that

X = o =pd; " w
VR d—1 I d—1-
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We then have
xsin? 9o > pr(x) 617 wa 1 L(2) 164 = pr(x) wao1 L(z)?7Y,

so that, using (3.5.54), we have

L B 1 =
P(9) < Vp 34 X7 (sindp2) " (1 - >

< (wil) Jo(x) T + 2+ 1)pu(z) <1L(x)1d)1d 5
(pr.(x) wa_1) ™" L(x) p

=

The estimate above requires that

1

pr(z) wg1L(z)t > 1,

but this condition is (3.5.63), which we have already assumed. We know that
J(x) /1, pa(z) \, 1, pr(x) / 1 and from (3.11.31) we have L(z) / L(cc). We

therefore see that

=

1

(25)" 7= + @+ mpn (o) (- Loy )
(pr(x) wa—1)™" L(x) p

=

d

Wd—1

N

| = [N—
al
&
T
_
~
i
-
2l

4+ (247n) <1 - L(oo)—4
L(o0)

—

d
Wy

Assuming that N > = > Njy(5), where A is defined by (3.5.8), and that z satisfies
(3.5.62), (3.5.63) and (3.11.14), the resulting estimate is then

=

P(ﬂ) < C’H'LL('I)N’7 )

where

(3.11.32)
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with

=

d
Wd—1
1

a—
Wy_

2 1— lfld 1
+(2+m) <1_L(oo) d) wi (3.11.33)
L

() Wit

CmL(x) N CmL(OO) = (

—

as r — o0.

The domain D, .

Here we have 9 € (3 —+0p, % — 2%2]. We know from (3.5.25) that

1

= ( max sin§> M(9)T=2
SEIT (7,9),B(8,9)]

< M(9) . (3.11.34)

The case D,z now splits temporarily into two sub-cases.

1. For 9 € (3 —~6r, % —6r], (2.3.42) yields
V(@ +6r) — V() € [§pDV(V),5pDV(I + 6F)] .

2. For ¥ € (£ —6p, 2 — %£], we know from (2.3.44) that

VW +6p) =wy—V(r —9 —6p) and V(g) — %
Therefore
VW +dr) =V (5) =V () ~ Vi =9 - o).

This means that the portion of the interval [,9+6r] which lies in the Southern

hemisphere is equivalent to the interval [x — ¢ — 6r, %] in the Northern hemi-

sphere. If we now define 9 := 7 — 9 — ér, we have ¥ € [Z —6p, F — °F], and
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therefore

> (r — (0 + 9)) min (DV(J), DV(9)) > 5DV (g - 5F) .

The last inequality is justified by Lemma 2.3.16.

We can now put the two sub-cases back together by noting that
s s
since v6r > 6. In other words

V(0 + 6p) — V(0) > 5FDV(g — AR,
Using (2.3.41), (3.5.23), (3.5.39) and (3.11.26), we therefore have

M) > xsin® (5 =0F) +7+ 0
> cd—1 (T _
> x sin (2 ’y(SF) 1
9 d—1
Zx|1—=vF -1
0

1) 2
> wwd—l <1 — = pu(x)dr

3
N———
T
—
\
—_

Vr
1) 2 1 d-1
> pL(z) Loy (1 — 2 pula) wi x—é) —1.
Vr T

Therefore

M@®) > A(x)N T —1, (3.11.35)
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where
1-d 2 1 1 d—1
Az) = pr(z) wyT wi—1 (1 - pr(z) wi xd) . (3.11.36)
Here we need to assume that
2

1
— 7 pu(T) W] T <1,
7r

so that A(z) > 0. This occurs when

T 27\ *
> <7j> wa. (3.11.37)

This holds for = sufficiently large, since py(z) \, 1 as z — co.

In fact we see that since pr(x) /1 and py(z) \,1 as z — oo,

1—

A(z) / A(oo) == wde Wd—1 (3.11.38)

as r — oo.

Estimate for D,,g.
Assume that N > 2 > Ny(5), where A} is defined by (3.5.8), and that z satisfies
(3.5.62), (3.5.63) and (3.11.37).

First, we see that
ANT =12 (Alz) —a @ )N T,

We want this last expression to be positive. This occurs when z > A(z)71, that is,

when

_d_ 2 1 1 d
o> (oule) wa) ™ (1= 2 9 puta) o o4 ) (3.11.39)
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Since

as = — oo, we see that (3.11.39) holds for = sufficiently large.
We now have from (3.11.34) and (3.11.35) that for N > = > Ny(5), where Aj
is defined by (3.5.8), and = satisfies (3.5.62), (3.5.63), (3.11.37) and (3.11.39) the

estimate

=

P9) < M) 77 < Cppr ()N 14,

where

Crm(z) = (A(z) —2™@ )7, (3.11.40)

and where, considering (3.11.38), we have

Conm () \, G (00) := A(o0) T4 | (3.11.41)

as r — o0.

Final result.
Given z > Ny(5), where Ay is defined by (3.5.8), such that = satisfies (3.5.62),
(3.5.63), (3.11.14), (3.11.37) and (3.11.39), the following estimate obtains.

For N >z and (r,3,9) € Dy, we have

P(9) < Cp(x)N "4, where Cp(z) = max(Cy(z), Cpnr(z), Crurr (2)), (3.11.42)

with Cp(z) monotonic decreasing in z. This completes the proof of Lemma 3.5.26.

O
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3.11.3 A per-region bound on diameter

Proof of Theorem 3.7.2.

For the whole sphere S¢, we have
diamS? = 2 = dbS*.

The partition algorithm for EQ(1,N), with & > 1, divides S into A equal seg-
ments, as described in Section 3.2.1. For a region R contained in EQ(1,N), with
N > 1, the region can be therefore be described by the pair of polar coordinates «,

B. That is, R =R(a,3). The spherical distance s(®(«),®(8)) is then given by
s(®(a),0(8)) = ZW” <
Using Lemma 2.3.2, the diameter of R is then
diamR = [©(a) — O(F)| = T (s(@(a),@(ﬁ))) 7 <N) — dbR.
For d > 1, for a spherical cap R with spherical radius 9., by Lemma 3.3.1,
diamR = 2 sin9, = dbR.

For d > 1, for a region R contained in collar i € {1,...,n} of a recursive zonal equal

area partition of S with n collars, by Lemma 3.3.5, if diamIIR < dbIIR then

diam R < \/T(éi)2 + w?(diam IIR)2

< /T(8)? +w(dbIIR)? = dbR.

The result follows by induction on d. ]
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3.11.4 The Feige-Schechtman lemma

Proof of Lemma 3.8.1.
This proof essentially follows [54, Lemma 21, p. 430-431].
1. Given d > 1, N > 2, use (3.2.2) to determine 9.. Then we have V(9.) = Vg =
wqa/N, with Vi being the area we need for each region of the partition.
2. Now create a saturated packing of S? by caps of spherical radius 9., as per
Definition 2.7.3, constructed via a greedy algorithm so that each cap kisses at

least one other cap. Let m be the number of caps in the packing.

Figure 3.8: Step 2 of the Feige-Schechtman construction

(Figure 3.8 uses the putatively optimal packing of 27 points on S? as found by
Tarnai and Géspér [151, pp. 205-206], and listed by Kottwitz [87, Table 1,
p. 161] and Sloane [143, pack.3.27.txt]. This packing is used for illustration
purposes only.)
We see that no point of S¢ is more than 29, from the centre of a cap, otherwise
we could have added another cap. Therefore the m centre points of the packing
are also the centres of a covering of S? by spherical caps of spherical radius 29,
[164, p. 1091] [165, Lemma 1, p. 2112]. (See Figure 3.9, where the boundaries
of the covering caps are shown in yellow.)

3. Now partition S¢ into Voronoi cells V;, i € {1,...,m} based on these m centre

points. The Voronoi cell V; corresponding to centre point i consists of those
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Figure 3.9: Step 2 of the Feige-Schechtman construction, showing covering caps

points of S which are at least as close to the centre point i as they are to of

any of the other centre points. (See Figure 3.10.)

Figure 3.10: Step 3 of the Feige-Schechtman construction

We see that the Voronoi cells must contain the packing caps and be contained
in the covering caps. Thus each V; has area at least Vz and spherical diameter
at most min(r, 29,).

4. Now create a graph I' with a node for each centre point and an edge for each
pair of kissing packing caps. (See Figure 3.11.)

5. Take any spanning tree S of I' (also known as a mazimal tree [116, Section

6.2 pp. 101-103]). (See Figure 3.12.)
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Figure 3.12: Step 5 of the Feige-Schechtman construction

The tree S has leaves, which are nodes having only one edge, and either a
single centre node, or a bicentre, which is a pair of nodes joined by an edge.
The centre or bicentre nodes are the nodes for which the shortest path to
any leaf has the maximum number of edges [27] [28, Volume 9, p. 430] [128,
Chapter 6, Section 9, p. 135]. If there is a single centre, mark it as the root
node. If there is a bicentre, arbitrarily mark one of the two nodes as the root
node. Now create the directed tree T from S by directing the edges from the
leaves towards the root [128, Chapter 6, Section 7, p. 129].

6. For each leaf j, of T define n; := |#(V})/Vr], (with |z] denoting the least integer
function of =).

7. Partition V; into the super-region U; with o(U;) = n;Vr and the remainder

Wj Z:‘/}\Uj.
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For each nonleaf node & other than the root, define X, = Vi, UU; jyer W, that
is, we add all the remainders of the daughters of k£ to V, to obtain X;.

Now define ny := |o(Xy)/Vr] and partition X, into the super-region U, with
o(Ug) = ni Vg and the remainder Wy := X, \ Uy.

Continue until only the root node is left.

For the root node ¢, if we define U, := V, U Uik.oyer W, We see that we must

have o(U;) = nyVr, where

o) ::Noni.

)

that is, the area of the super-region corresponding to the root node must be
an integer multiple of Vg.

Since at each step we have assembled U; only from the Voronoi cells corre-
sponding to kissing packing caps, each U; is contained in a spherical cap with
centre the same as the centre of the corresponding packing cap, and spher-
ical radius min(r,49.), and so the spherical diameter of each U; is at most
min(7, 89,).

Now partition each U; into n; regions of area Vg, and let FS(d,N) be the
resulting partition of S¢. Then FS(d,N) is a partition of S? into NV regions, with
each region R € FS(d,N) having area w,/N and Euclidean diameter bounded

above by

diamR <Y (min(ﬂ, 8196)) = 2sin (min (g,419¢>) .

Remarks. Feige and Schechtman’s proof [54, Lemma 21, p. 430-431]
uses a maximal packing instead of a saturated packing, but maximality
is harder to achieve and the proof of Lemma 3.8.1 only needs a saturated

packing.
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3.12 Approximate values of constants

We here tabulate the approximate values of N; and K, as calculated by Maple using
the various definitions given in the proofs of lemmas in Section 3.11 and the proof
of Theorem 3.1.3. The values depend on the choice of Ny > = > Ny(5), where Aj
is defined by (3.5.8), and x is further constrained by (3.5.62), (3.5.63), (3.11.14),
(3.11.37) and (3.11.39).

First, we try setting Ny to be [z], where = satisfies all the necessary constraints.

We then use Maple to calculate the constants listed in Table 3.1.

d Ny Kr | Ka Ct | Cor | G | Cp Ky Ky
2| 7.90 x 10! | 17.78 | 4.91 | 1.15 | 1.20 | 0.98 | 1.20 9.01 | 17.78
3[1.56 x 102 | 10.77 | 3.69 | 1.54 | 1.52 | 1.37 | 1.54 | 27.54 | 27.54
41441 %x10%| 9.17(3.02|1.60| 1.61 | 1.42 | 1.61 | 44.45 | 44.45
5|1.13x10% | 8.16|2.60 | 1.63| 1.66 | 1.44 | 1.66 | 73.74 | 73.74
6 |2.70x10% | 7.46 |2.31|1.63| 1.69 | 1.45 | 1.69 | 124.60 | 124.60
71678 x10% | 7.05|2.10|1.62| 1.70 | 1.44 | 1.70 | 211.99 | 211.99
812.26x10* | 7.00 | 1.92 | 1.57 | 1.68 | 1.40 | 1.68 | 356.91 | 356.91
9| 7.89x10*| 7.00|1.77 | 1.52 | 1.67 | 1.36 | 1.67 | 595.28 | 595.28
10 | 2.87 x 10° | 7.03 | 1.66 | 1.48 | 1.65 | 1.33 | 1.65 | 985.08 | 985.08

Table 3.1: Constants from proof of Theorem 3.1.3

We now improve the constants above in two ways. First, for d < 4 and N <
100 000, we estimate maxdiam(d, N') by computing the per region diameter bound for
each region of EQ(d, V) as per Sections 5 and 8 of [99]. We then set Ny =100 000 for
these values of d and set K; to be the maximum estimated value of maxdiam(d, \)
obtained.

Second, for d > 4, we use Maple to find Ny > z such that z satisfies all the
necessary constraints and such that K; = K. Maple then obtains the constants
listed in Table 3.2. In particular, for this choice of Ny, we have K, < 7.4 and
K3 < 9.1. Zhou obtains K, < 7 for his algorithm [167, Theorem 2.8 p 13]. The larger
bound here can be explained by the crudeness of the approximations used to prove

the lemmas and Theorem 3.1.3, and in particular, the use of separate bounds for Kx
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Ny

Ky,

Ka

Ce

CmL

CmH

Cp

Ky

K4

Krg

1.00 x 10°
1.00 x 10°
1.00 x 10°
3.82 x 104
2.04 x 106
1.92 x 108
3.29 x 1010
1.07 x 1013
6.71 x 10'°

© 00 N O U k= W N

—_
o

<6.5
<170
<75
16.50
22.52
30.50
41.28
56.05
76.51

4.55
3.36
2.78
2.45
2.14
1.93
1.76
1.64
1.53

0.87
1.09
1.18
1.29
1.22
1.19
1.17
1.16
1.14

0.92
1.14
1.26
1.39
1.36
1.35
1.35
1.36
1.36

0.57
0.80
0.93
1.07
1.02
1.00
0.98
0.97
0.97

0.92
1.14
1.26
1.39
1.36
1.35
1.35
1.36
1.36

7.37

9.06
11.77
16.50
22.52
30.50
41.28
56.05
76.51

7.37

9.06
11.77
16.50
22.52
30.50
41.28
56.05
76.51

16.00
13.41
12.16
11.41
10.90
10.54
10.26
10.04

9.86

Table 3.2: Improved constants from proof of Theorem 3.1.3

and Cp over D. We have added the Feige-Schechtman constant Krs for comparison
and we see that K; < Krg for d < 4.

If we ignore K and take the limit of Ky as Ny — oo, Maple obtains the constants

listed in Table 3.3.

d | Ka(oo) | Ci(00) | Crur(00) | Crum(o0) | Cp(oo) | Ka(o0) | Krs
2 4.54 0.87 0.92 0.56 0.92 7.34 | 16.00
3 3.32 1.07 1.12 0.76 1.12 8.86 | 13.41
4 2.72 1.13 1.21 0.84 1.21 11.02 | 12.16
) 2.34 1.15 1.25 0.88 1.25 14.00 | 11.41
6 2.08 1.15 1.28 0.90 1.28 18.10 | 10.90
7 1.89 1.15 1.31 0.92 1.31 23.71 | 10.54
8 1.74 1.15 1.32 0.93 1.32 31.43 | 10.26
9 1.62 1.14 1.34 0.94 1.34 42.11 | 10.04
10 1.52 1.14 1.35 0.94 1.35 56.99 | 9.86

Table 3.3: Limiting constants from proof of Theorem 3.1.3




CHAPTER 4

Spherical codes based on equal area partitions

“That’s a thread that has linked several recent projects: we (usually
Hardin and me) run the computer to find good packings, or coverings,
or designs, we stare hard at the results, we learn, and we generalize.”

— Neil Sloane interviewed by A. R. Calderbank in [48].

We use the notation EQP(d,N) to denote the recursive zonal equal area (EQ)

code with A/ codepoints in the unit sphere §¢ c R*1.

4.1 Construction of the EQ codes

In essence, EQP(d, N) is constructed by taking the partition EQ(d, V) and placing one
point, called a codepoint at the “centre” of each region of the partition. There are
two areas of ambiguity in this construction, which will be discussed and removed
in this section.

Figure 4.1 illustrates the code EQP(2,33) in red, with the boundaries of the

partition EQ(2,33) shown in blue.

4.1.1 FExactly where is the centre of a region?

First, we need to specify what is meant by the “centre” of a region. Recalling

(3.2.12), each region R of EQ(d,N) is of the form

R:’R((7’1,...,Td),(vl,...,vd)) = @([7‘1,1)1] X ... X [Td,vd]).

151
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Figure 4.1: EQ code EQP(2,33), showing the partition EQ(2,33)

In particular, the North polar cap is of the form

Ri =0 ([0,27] x [0,7] x ... x [0,7] x [0,9.]),

and the South polar cap is of the form

Ry =@ ([0,27] x [0,7] x ... x [0,7] x [ —dq,7]).

In general, because of the recursive nature of the construction, some regions of

EQ(d, N) may be descendants of a circle, having the form

R = ([0,2n] x [r2,v2] X ... X [4,vd]),
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or may be descendants of a polar cap, having the form

R=0([0,27] x [0,7] x ... x [0,7] x [0, 0] X [Thp1, Vks1] X ... X [Tg,v4]),

or

R=0([0,27] x [0,7] x ... x [0,7] X [7, 7] X [Thg1, Vks1] X ... X [Tq,v4]).

In fact, the interval of longitude may be of the form [r, 7 + 27] (mod 27).

The algorithm to determine the spherical coordinates of the codepoint

in terms of the pseudo-vertices 7 and v, can be written in pseudocode as:

if v; =7 + 27 (mod 27) then

else a; := (11 +v1)/2 (mod 2r);
endif;
for k €{2,...,d} do
if 7, =0 then oy := 0;
else if vy = 7 then «ay 1= 7;
else oy == (1 + vk)/2;
endif;
enddo.

Using this algorithm, we see that

Ri = ([0,27] x [0,7] x ... x [0,7] x [0, v%] X [Tht1, Uk1] X .. X [Tg, v4])

153
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yields
BR :@(0,0,...,0,0,7’““+U’““,...,Td+“d>7
2 2
while
Ry =@ ([0,27] x [0, 7] x ... x [0,7] X [7%, 7] X [Ths1, Vkg1] X ... X [Ta,v4])
yields
BRQ=®(0,0,...,0,77,Tk+1_;Uk—‘_l,...,Td—;Ud)7

and in particular, a North polar cap yields the North Pole,

B o ([0,27] x [0,7] x ... x [0,7] x [0,v4]) = ©(0,0,...,0,0),

while a South polar cap yields the South pole,

B ([0,27] x [0,7] x ... x [0,7] x [rq,7]) = &(0,0,...,0,).

4.1.2  Ezactly where are the regions?

As noted in Section 3.2, the partition EQ(d, V) is not fully specified by the algorithm
described there. The algorithm instead specifies an equivalence class of partitions,
unique up to rotations of the partitions of S'. This means that the collars of EQ(2, V)
are free to rotate without changing diameters of the regions and without changing
the colatitudes of the collars.

Here we complete the specification of the partition algorithm by specifying a
SO(2) rotation for each collar which aims to maximize the minimum distance be-

tween the codepoints of successive collars of EQ(2,N).
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The offset rotation applied to collar i + 1 of EQ(2,N) with respect to collar i is

d 1y g
offset = T _ ™, mged(mimisy) (4.1.1)
Mi41 m; m; M;q

The first two terms above align the first codepoint in collar i + 1 directly south
of the first codepoint in collar i.

The third term adds an extra rotation which maximizes the minimum difference
in longitude between points of collar i and points of collar i +1. This is because the
greatest common divisor g := ged(m;, m;;1) is the smallest positive integer such that

the equation
g=xm;+y miy (4.1.2)

has a solution in integers. This characterization of g is a well-known result in
number theory. See, for example, [114, Theorem 1.4, pp. 4-5].

As a result of (4.1.2) we have

T
9 _ Y

m;m;1 m; mi41

for some integer z,y, implying that since the first codepoint of collar i + 1 is aligned
with the first codepoint of collar i + 1, there must be some codepoint of collar i + 1
which differs in longitude by 27 g/(m;m;;1) from some codepoint of collar i, and that

this is the smallest non-zero difference in longitude.

4.2 The EQ codes are not good for polynomial interpolation

Here we elaborate the point made in Chapter 1, that the EQ codes for square
numbers of points of S?, are not suitable for polynomial interpolation, because the
corresponding Gram matrix is often singular to machine precision. In terms of
Definition 2.10.1, the EQ codes for square numbers of points of S? are either not

fundamental systems or are very close to a code which is not a fundamental system.
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It can in fact be proven that the stronger condition holds asymptotically in
degree for d > 1.

Theorem 4.2.1. Ford > 1 there is a polynomial degree to, depending on d, such that
for t > ty, there is a non zero polynomial of degree t which is zero at all codepoints
of the spherical code EQP(d,D(d,t)).

Theorem 4.2.1 is true essentially because for large polynomial degrees the cor-
responding EQ codes are concentrated on too few colatitudes to ensure that the
interpolating is unique. Details are given in the proof below.

For at least d = 2 there is strong numerical evidence for the following conjecture.
Conjecture 4.2.2. For d > 1,t > 0 the set EQP(d,D(d,t)) is not a fundamental
system.

This conjecture might conceivably be approached using methods similar to those

of zu Castell, Lain Ferndndez and Xu [166, 169] [91, Section 2.4] [92, Section 2.

Proof of Theorem 4.2.1.

We need in general to show that there is a non zero polynomial of degree ¢t which
is zero at all codepoints of the spherical code EQP(d,D(d,t)). This is easy to do if
the number of zones n 4+ 2 is less than ¢ + 1, since in this case we can construct
a polynomial in the single variable z4,; with zeros at the n+ 2 colatitudes of the
codepoints of EQP(d, D(d,t)). We must therefore show that there exists a strength ¢,
such that for ¢ > ¢, the partition EQ(d, D(d,t)) has n <t — 1.

We therefore examine EQ(d, N) for "= D(d,t). Using (2.6.6) we have

2t +d

(t+d—1)¢
d! '

2
(t4+1)4-1 < o

N =D(d,t) = (4.2.1)
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We now assume that & > Aj (3) and use the definition (2.3.35) and the estimates
(3.5.50) and (3.5.51) which together imply that

d d d
d T T T
n® < 57 " o N o D(d,t)
U(HY) 2(t+d-1)% =t T (4
d 2 2 _\d
<v o SR S o e )" (4.2.2)
We now apply the estimate (2.2.13) to obtain
d ™5 d
n \(Z) (t+d—1)"
If we let
Cyi= (g)* : (4.2.3)
then for N > Ap (3) and
(d — 1) Cg+1
t> —1-c, C,
we have n<t¢—1. O

4.3 Minimum distance between codepoints

By the minimum distance between codepoints of EQP(d, N') we mean the minimum

Euclidean distance, defined as follows.

Definition 4.3.1.

mindist(d, ') := mindist EQP(d, ) = |la—Db. (4.3.1)

min
a,beEQP(d,N),a#b

The codepoints of an EQ point set are well separated in the following natural

sense.
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Theorem 4.3.2. For each d > 1 there is a constant K, such that for all N > 2,
EQP(d,N') has no two codepoints with Euclidean distance less than K, N~a. In

other words,

mindist(d, N') > K, N1 (4.3.2)

The proof of Theorem 4.3.2 first shows that the minimum spherical distance
between codepoints must be at least twice the minimum spherical distance between
any codepoint and the boundary of the region which contains the codepoint. This
implies that the minimum Euclidean distance between codepoints must be at least
twice the sine of the minimum spherical distance between any codepoint and the
boundary of the region which contains the codepoint. It is therefore useful to define

the following quantity.

Definition 4.3.3.

minsin(d, V') := min _sins(@R,IR). (4.3.3)
REEQ(d,N)

The proof of Theorem 4.3.2 continues by using the following result.
Lemma 4.3.4. For each d > 1 there is a constant K, such that for all N > 2,
the minimum of the sine of the spherical distance between any codepoint and the
boundary of the region which contains the codepoint is at least K, N~4. In other

words,

minsin(d, N') > K; N4 (4.3.4)

Proof of Theorem 4.3.2.

We consider the general case where d > 1 and N > 1.

Consider any two regions A, B of EQ(d,N) and their corresponding codepoints
a:=3A and b := @ B. The minimal geodesic arc from a to b must pass through 94,

the boundary of A, may possibly pass through other regions and must then pass
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through 0B, the boundary of B. The spherical distance s(a,b) must therefore be at
least the twice the minimum of s(a,d4) and s(b,dB).

Since our argument works for any two codepoints, the minimum spherical dis-
tance between codepoints must be at least twice the minimum spherical distance
between any codepoint and the boundary of the region which contains the code-

point. In other words,

min s(a,b) > 2 min  s(@R,JR).
a,beEQP(d,N),a#b REEQP (d,\)
We therefore have
b
mindist(d, N') = min T (s(a,b)) = min 2 sin s(a,b)
a,beEQP(d,N),a#b a,beEQP(d,N),ab 2

ming hbeEQP(d,N),a%b (&, b)
2

=2 sin

>2sin min s(@R,0R) =2 min  sins(ER, IR)
REEQP (d,N) REEQP (d,N)

= 2 minsin(d, ).

Using Lemma 4.3.4, we see that there is a constant K, such that for all & > 2,

we have

mindist(d, N) > 2 minsin(d,N') >2 K, N4,

4.8.1 Sketch of proof of Lemma 4.5.4

The proof of Lemma 4.3.4 proceeds by induction, with the unit circle as a special
case. In the case of the unit circle, the codepoints are equally spaced and we show
that the distance between each codepoint and the corresponding boundary has the
right order.

For d > 1 we show that there is a trivial lower bound of the right order for small

N, since the no codepoint lies on the boundary of a region.
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We now consider the general case where d > 1 and A/ > 1. We make the inductive

assumption that there is a constant K, , such that for all m > 1,
minsin(d — 1,m) > K:if1 mTa. (4.3.5)

If a given region R is a polar cap then the codepoint @R is a pole and s(@R,dR),
the spherical distance between @R and the boundary of R, is 9., the spherical radius
of the polar cap. We show that sin,. is of the correct order.

If R is not a polar cap then it is a region contained in a collar, say collar i. In
this case the point of R closest to the codepoint @R is either a point of the top and
bottom boundary 9!R or a point of the side boundary d..R.

We show that s(mR,d'R) is half the collar angle §;. We also show that when

sins(mR,d_R) < sins(a R, dIR) we have

sins(@ R, 0R) = sin % sins(mIIR, O IIR).

Using our inductive assumption we deduce that

;i ¥+ 3
sins(& R, OR) > min (sin 5,1(le1 sing m,/ d.) .

2 1

We now assume that V' > N, with Ny sufficiently large that we have at least five
collars. We then use the definitions and estimates which were used in the proof
of the lemmas supporting Theorem 3.1.3 to show that sins(m@ R, dR) is of the correct

order.

4.8.2  Analysis of the case d >1 and N > 2
We now analyze minsin(d, N') in the case d > 1 and A/ > 2 in order to develop a number
of geometrical lemmas which will be used in the proof of Lemma 4.3.4.

Since N > 2 we have at least one collar. In this case, a region is a polar cap, is

the only region in a collar, or is one of many in a collar.
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If the codepoint @R is a pole contained in a polar cap R, then s(@R,dR) = 9., the
spherical radius of the polar cap. Otherwise the codepoint is in a region contained
in a collar.

We now assume that we have a codepoint @R which is the centre point of a
region R contained in collar i. Denote the top and bottom boundary of R as 9!R.
Denote the side boundary of R as d._R.

If R is the only region in a collar, then s(m R, dR) is s(& R, d1R), the distance between
@R and 9!'R, the top and bottom boundaries of R.

If R is one of many in a collar then s(mR,dR) is the minimum of s(m@R,d!R) and
s(@R,0._R), the distance between mR and the side boundary of R.

We now consider s(mR,d'R).

Lemma 4.3.5. Let R be a region in collar i of EQ(d,N). Then the distance from

the codepoint @R to the top and bottom boundary O'R is

SR, OR) = . (4.3.6)
The analysis of s(@R,d_R) is more complicated, but it gives us the basis of an

inductive proof of Lemma 4.3.4.

Lemma 4.3.6. For a region R in collar i of EQ(d,N) such that m; > 2, either

s(IR,0R) = s(@R,0'R) < s(@R,0_R) or s(BR,R) = s(aR,0_R) < s(@R,dR) and

¥ + 0

sins(@R,0R) = Sin% sins(IIR,OIIR). (4.3.7)

Using the inductive assumption that for R € EQ(d — 1,m;) we have

1

sins(mR,0R) = K, ;ml 7,

we conclude that

S L it L
sins(E@ R, dR) > min <sin£,Kd_1 sin% ml‘d> :
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We now define

;= sin % m; 7. (4.3.8)
We therefore have
N s N
minsin(d, ) > min <sin 19C7II£1{1 sin 5’, K, IIll{l 1/%‘) . (4.3.9)

We now assume that N > N, with N, sufficiently large that we have at least five
collars. We can therefore use the definitions and estimates of the previous chapter.
We use the feasible domains D, D, ,D; and D,,; defined by (3.5.10), (3.5.42), (3.5.38)
and (3.5.44) respectively, and the functions Y,7,8, M and A, defined by (3.5.20) to
(3.5.24) respectively.

We also define

T(1,9) + B(5,9)

U(r,3,9) :=sin 5

M(r, 8,9)T1, (4.3.10)

where 7,8 and M are defined by (3.5.21), (3.5.22) and (3.5.24) respectively.

The sequence ¢ and the function ¥ are related to each other in the same way as
the sequence § and the function A. In other words, we have the following relation-
ship.

Lemma 4.3.7. Foriec{1,...,n} we have

U(—aj—1,a;,VF:) = ;. (4.3.11)

The function ¥ also has the same symmetry as the function A.

Lemma 4.3.8. The function ¥ satisfies

U(r, 8,7 —39)=¥(B,7,9 — 0p). (4.3.12)
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As a consequence of (3.5.31), (4.3.9) and (4.3.11) we have
minsin(d, ) > min (smﬁc,nﬁnsm X K, min \I/) , (4.3.13)
and by Lemmas 3.5.9 and 4.3.8 we therefore have
minsin(d, \') > min (sm ¢, minsin —, K;_; min \I/) . (4.3.14)
Dy 2 Dy

To complete the proof of Lemma 4.3.4 we must show that each of the expressions

in (4.3.14) has a lower bound of the correct order.

Lemma 4.3.9. For d > 1, there is a positive constant N. € N and a monotonic
increasing positive real function K, such that for each partition EQ(d,N) with N >

x}N'

c)

sind, > K, ()N 4.
Lemma 4.3.10. For d > 1, there is a positive constant Ny € N and a monotonic
increasing positive real function K, such that for each partition EQ(d,N) with N >
> Ny,

A
minsin — > K (x)N 4.
Dy 2

al=

Lemma 4.3.11. For d > 1, there is a positive constant Ny € N and a monotonic
increasing positive real function Cy, such that for each partition EQ(d,N') with N >

z 2 Ny,

min ¥ > Cg (z)N 7.

Dy

4.3.8  Numerical results

Figures 4.2, 4.3 and 4.4 show the minimum distance coefficient for EQP(d, V) for A/

from 2 to 20000 for d = 2,3, 4 respectively. The minimum distance coefficient is here
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defined to be mindist(d, V)N 7, where mindist(d,N) is defined by Definition 4.3.1.
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4.4 Packing density

Hamkins, in his PhD thesis [65], and Hamkins and Zeger, in a series of papers,
describe “asymptotically optimal” spherical codes. According to [65, p. 64], [66]
their wrapped spherical codes for S are in general, asymptotically optimal in terms
of packing density, if the densest packing in R? is used in the wrapping algorithm.
Their laminated codes [67], have in some cases a higher packing density than the
corresponding wrapped spherical codes [65, p. 80].

The packing density of the EQ points is in general lower than that of the
Hamkins-Zeger wrapped spherical codes. Table 4.1 compares the maximum number
of points of the Hamkins-Zeger spherical codes and EQP for selected values of d and
minimum distance. Compare this with Tables 3.2 and 3.3 of [65, p. 47].

For s2, taking the rotation of Section 4.1.2 into account, the codepoints of
EQP(2, V) near the equator approximate a non-uniform hexagonal lattice as N' — oo.
Without this rotation, the codepoints near the equator approximate a square lattice

of distance \/wq/N as N — oc.
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d 2 2 3
Minimum distance 0.1 0.01 0.1
Coxeter upper bound | 1450 | 145103 | 29 364
Laminated code 1294 | 124422 | 16976
Wrapped code 1070 | 130682 | 17198
EQP 1100 | 110366 | 13591

Table 4.1: Maximum number of points for given minimum distance for Hamkins-
Zeger spherical codes and EQP.

In general, for d > 2 we should not expect EQP(d,N) to yield a better packing
density than the density of the simple cubic lattice for R?. This density is simply
the ratio of the volume of the unit ball B? to the volume of the enclosing cube, 2,

that is

Be d/2
density (EQP(d,N)) ~ M(Qd ) = 54 F7(Td/2 rE (4.4.1)
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Figures 4.5, 4.6 and 4.7 show the packing density of EQP(d,N) for A from 2 to
20000 for d = 2,3,4 respectively. In each of these figures the red horizontal line is the

the density of the simple cubic lattice for R?, as per (4.4.1).
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We now examine the packing density of EQP(d, N) using the Wyner ratio as per
Definition 2.7.6. Figure 4.8 shows the Wyner ratio of EQP(d,N) for A from 2 to
20000 for d = 2 in blue, d = 3 in red and d = 4 in green. Each shows a Wyner ratio
greater than 1, but d = 2 is better than d = 3 which is better than d = 4.

Figure 4.9 shows the Wyner ratio of EQP(d,N) for A from 2 to 1000 for d =5 in
blue, d = 6 in red and d = 7 in green. For d =5 the Wyner ratio is generally better
than 1, but not so for d = 6 and especially not for d = 7. For d = 7 the Wyner ratio
is generally worse than 1, for A/ > 20. This indicates that EQP(d,N) yields a poor

packing for d > 5.

4.4.1 Nesting and layering

The construction of the EQ codes can be modified to produce nested codes, by
subdividing each region of an EQ partition into 3" regions, where n is the nesting
depth. We elaborate this idea here. This is an informal discussion containing no
proofs.

The main idea here is to divide each collar into 3" collars of equal area. To
simplify the discussion, we only consider n = 1 here. For n > 1 we can apply the
same method recursively. We first divide collar i of EQ(d, ) into 3 collars of equal
area. At this point each of these 3 collars is still subdivided into m; regions. We
then recursively apply the subdivision to EQ(d—1, m;) to subdivide each of the collars
into 39-! m; regions. We need to use a different algorithm for the spherical caps,
where we must subdivide the cap into a smaller cap having 3¢ of the original area,
and two new collars.

The nested code is obtained by placing codepoints at the centres of each region,
except where the region contains an original codepoint, which is retained.

One difficulty with this method of subdivision is that the definition of the centre
of a region given in Section 4.1.1 simply divides a collar by halving the colatitude.
Since DV(9) is proportional to sin®~'¢ this results in the half of the collar lying
towards the equator having more area than the half lying towards the poles, with

the problem getting worse as d increases. There is therefore a value of d such that



170 Chapter 4. Spherical codes based on equal area partitions

our simple subdivision scheme no longer works, in the sense that when we subdivide
a collar into 3 new collars, the colatitude of the original codepoints will no longer
lie in the centre collar of the 3 new collars, but instead will lie in the new collar
which is closest to the pole.

The remedy to this difficulty is to revise the definition of the centre point of
a region so that each collar is divided into two by area rather than by colatitude.
With this new definition of centre point, the subdivision process will retain the

original codepoints as the centre points of & of the 3¢ &' new regions.

4.4.2  Methods to increase density

The EQ partition of S? has its regions offset in a natural way to maximize minimum
distance between the corresponding EQ codepoints. For §? with d > 2 there is no
such natural offset, but it is possible that a variation of the EQ algorithm could
produce a larger minimum distance.

To elaborate, we have already seen in Section 4.1.2 a scheme to maximize the
minimum distance between codepoints by rotating successive collars. For d > 3, if
the EQ partition contains more than one collar then each collar contains a codepoint
of the EQ code corresponding to the North Pole of S¢-1, and the minimum distance
between codepoints of collar i and collar i + 1 is %*#. Any SO(d) rotation which
does not fix the North Pole could be used to move the “North Pole” of collar i + 1
away from the “North Pole” of collar i, but this causes two further problems.

First, unlike the S? case, it is not clear which rotation will maximize the minimum
distance between codepoints of successive collars. Second, a general SO(d) rotation
will not take a RISC region to a RISC region: each pseudovertex will in general have
its colatitudes perturbed in a different way. For d = 3, the Matlab implementation
EQSP 1.10 “solves” the first problem by ignoring it. It rotates collar i + 1 by an
SO(3) rotation which takes the North Pole of S§? to a point where the boundary of
the North polar cap of collar i meets the boundary between two adjacent regions
in the top collar of the EQ partition of collar i. EQSP 1.10 solves the second

problem by recording the rotation used for each collar. To describe a region of
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its modified version of EQ(3,N) requires the coordinates of two pseudovertices in
standard position as well as a 3 x 3 matrix describing the rotation of the collar. This
method is clumsy and was not attempted for d > 3.

There is an alternative to rotating the collars, but it involves a modified partition
algorithm. The standard EQ algorithm forces the creation of a cap at both the
North and South poles. The modified “unicap” EQ algorithm forces a cap only at
one pole, dividing the remainder of the sphere as per the collars of the standard EQ
algorithm. In some cases, this may still result in a cap at the opposite pole, but in
most cases in low dimensions, it will result in the opposite pole not having a cap.
Also, the unicap EQ partition may result in a lager maximum diameter than the
standard EQ algorithm, or the corresponding unicap EQ codes may have a smaller
minimum distance than the standard EQ codes.

The idea of the modified EQ partition is to use the unicap EQ partition for the
collars, with the polar caps alternating between the North and South poles. This
may result in a larger minimum distance between codepoints of the corresponding

modified EQ code. This idea has not yet been tried.

4.4.8  Combined nesting and rotation

In the case of the S? partitions, the nesting scheme of Section 4.4.1 lends itself to
improvement by SO(2) rotations of the new collars.

Consider the case where each collar is split into three new collars. For a single
original collar, consider the three new collars and number them 3i (the upper collar),
3i +1 (the middle collar) and 3i + 2 (the lower collar). Since we want to preserve
the original codepoints, we can’t rotate the middle collar, but we can rotate the
upper and lower collars by half the difference in longitude between codepoints of the
middle collar. This is an optimal arrangement of codepoints of the 3 new collars,
but it disturbs the relationship between collar 3i and collar 3i — 1 (the lower collar
of the adjacent group of three collars). The solution would be to treat collars 3i — 2
and 3i +1 as fixed and to jointly optimize the rotations of collars 3i —1 and 3i. This

has not yet been tried.
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4.5 Spherical coding and decoding algorithms

The EQ partitions and EQ codes can be used to define a scheme for spherical
coding and decoding and a related scheme for Gaussian source coding, similar to
those described by Hamkins and Zeger [66, 68].

Refer to Figure 4.10 while reading the description of the spherical coding and

decoding scheme.

Figure 4.10: EQ code EQP(2,33), Voronoi cells, and EQ(2, 33)

Figure 4.10 illustrates the code EQP(2,33) in red, with the Voronoi cells shown in
yellow and the boundaries of the partition EQ(2,33) shown in blue. This shows that
the Voronoi cells of an EQ code are not the sames as the regions of the corresponding

EQ partition.

Preparation for spherical coding and decoding.

The preparation phase sets up two mappings.

1. Map a region number to a codepoint.
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2. Map the pseudo-vertex coordinates of a region, expressed as the pair of d-
tuples (7,v) to a region number.
This mapping uses a d—1 level tree structure, using spherical polar coordinates.
e Level 1 of the tree corresponds to the zones of the EQ partition of S¢
This corresponds the major colatitude, dimension d.
e For k € {2,...,d -2}, level k of the tree corresponds to the zones of the
EQ partition of S¢=F+1,
This corresponds the colatitude of dimension d — k + 1.
e The leaves at level d—1 correspond to the zones of an EQ partition of S2.
This corresponds to the colatitude of dimension 2.

There is sufficient information at the leaves to calculate the longitude.

Spherical channel coding.

1. Map the codepoint number to codepoint coordinates.

2. Transmit the codepoint coordinates.

Spherical channel decoding - the Quasi-Nearest Codepoint algorithm.

Channel decoding takes the received coordinates and tries to determine the nearest
codepoint. Since the regions are in general not the Voronoi cells of the corresponding
codepoints, if we just take the received point, look up the region and then look
up the corresponding codepoint, we cannot be sure that we have found the nearest
codepoint to the received point. We instead use a slightly more elaborate algorithm,

here called the “Quasi-Nearest Codepoint” algorithm:

1. Look up the received coordinates x to obtain the region R.
This is done by:
(a) Cartesian to spherical coordinate conversion:
E:i=(61,...,80) =0 ' x.
(b) For dimension i from d down to 2:

Binary chop using colatitude ¢&; to obtain the zone number.
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(c¢) For dimension 1:
Use the longitude ¢; to calculate the region number.
2. Obtain the codepoint a:=@R.
3. Get the distance to the codepoint, sq := s(x, a).
4. If the distance is less than the packing radius then we are done. Set the final
codepoint f := a and quit.
5. Otherwise the nearest codepoint may be the codepoint a of neighbouring
region.
e The neighbouring region cannot be one that differs only by longitude.
The boundary between two regions which differ only by longitude consists
of points which are equidistant from the two corresponding codepoints.
We therefore concentrate on the regions which differ by colatitude.
e Order the d — 1 colatitudes of ¢ by increasing distance to the nearest
corresponding boundary colatitude.
e We have colatitudes ¢;,, for i from 1 to d—1, where j is some permutation
of {2,...,d}. Call the corresponding nearest boundary colatitudes 9;,.
6. Keep the distance sy and codepoint a as the candidate distance r and candidate
codepoint c.

7. For each index i from 1 to d — 1:

(a) Reflect the colatitude ¢;, into the corresponding boundary 9;, to obtain
¢ with & =2 9;, — ¢, and ¢, := & for all other coordinates k.
We have a new point x; = ®¢’ in a region R; which is a neighbour of the
original region.

(b) Find the codepoint a; = @R; of the new region.

(c) Find the distance s; = s(x,a;) from the received point to the new code-
point.

(d) If the new distance s, is less than the packing radius we are done. Set

the final codepoint f := a and quit.
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(e) Otherwise if the new distance s; is less than distance r from the received
point x to the candidate codepoint ¢, then keep the new distance and
the new codepoint as candidate distance and codepoint. In other words,
set r =s;, c = a;.

8. Set the final codepoint f := ¢ and quit.

If s(x,f) is less than the packing radius, then we are certain that f is the closest
codepoint to x.
In other cases, we have a conjecture, which is very plausible for §? but is spec-

ulative for S¢ for d > 2.

Conjecture 4.5.1. Ford > 2, the Quasi Nearest Codepoint algorithm is a maximum

likelthood decoding algorithm for EQP(d).

Remarks.

We use spherical distances in the Quasi Nearest Codepoint algorithm,
but could just as easily have used Euclidean distances.

The searches used at each level of the Quasi Nearest Codepoint algo-
rithm use binary chop, which is logarithmic in time with respect to the
size of the search space. Since at each level we do a fixed number of
searches depending on the dimension, it should be fairly easy to show
that the Quasi Nearest Codepoint algorithm is logarithmic in time with
respect to the number of codepoints. The space requirements of the
Preparation step are a little harder to compute, but seem to be closer
to linear with respect to the number of codepoints. For S? the space
required is proportional to the number of zones and is thus proportional
to the square root of the number of codepoints.

In [68], Hamkins and Zeger describe Gaussian source coding and spher-
ical quantization.

The spherical quantization scheme of Huber and Matschkal is superfi-
cially similar to the Quasi Nearest Codepoint algorithm, but there are

some significant differences. The Huber-Matschkal algorithm partitions
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the sphere into regions which are only of similar area rather than almost
exactly equal area. More precisely, looking at steps (13), (14) and (20)
in [105], the regions which are created by these steps are not necessar-
ily equal in area other than for the trivial case of S'. The spherical
quantization algorithm described in [105] differs in two other significant
ways from the Quasi Nearest Codepoint algorithm. Firstly, it is more
space-efficient than the Quasi Nearest Codepoint algorithm because it
does not use a codebook. Secondly, it does not try to find the nearest
codepoint to a given point on the sphere, but rather merely maps the
point to the region which contains it.

In [156], Utkovski and Utkovski also describe a spherical quantizer for

Gaussian sources.

4.6 Proofs of Lemmas

Proof of Lemma 4.3.4.

The proof of Lemma 4.3.4 proceeds by induction, with the unit circle as a special
case.

In the case of the unit circle, the N codepoints are equally spaced with each
in the centre of its corresponding region, which is an arc of length 2%. Thus the
distance between each codepoint and a boundary of the corresponding region is

s(@R,0R) = %

We therefore have

2
minsin(d, N') = sin x

VN (4.6.1)

for N > 2.
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For d > 1 we make the inductive assumption that there is a constant K, , such

that for all m > 1,
minsin(d — 1,m) > K:ifl mra. (4.6.2)

For d > 1 there is a trivial lower bound of the right order for small A/, since the
no codepoint lies on the boundary of a region. If /' < Ny, then we need only consider
a finite number of partitions, each of which contain a finite number of regions. We

set

Ny

K := min minsin(d, \) N
N=2
Then for N € {2,...,No}, we have
minsin(d, N') > K/LN_%.

We now consider the general case where d > 1 and N > 2. The analysis of this

case above results in (4.3.14) which states that
o . A .
minsin(d, ') > min (sm ¥¢, minsin —, K;_; min \Il) .
Dy 2 Dy

Lemmas 4.3.9, 4.3.10 and 4.3.11 show that each of the expressions in (4.3.14)

has a lower bound of the correct order. Ul

Proof of Lemma 4.3.5.
The top and bottom boundaries of the region R lie on the parallels of colatitude
9; and 9, respectively. Consider the top boundary d'R. The parallel at ; on which
O'R lies is a small circle of spherical radius ¥; with centre the North Pole.
Now consider the codepoint a. The meridian ©(a) meets the top boundary 9'R
s

at the point a;, with s(a,a;) = %. The small sphere 9S(a, %) meets the parallel

2 2
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at colatitude 9; at exactly one point, which is a;. To see this, use stereographic

projection to R¢. A similar argument applies to the bottom boundary 9'R. O

Proof of Lemma 4.3.6.
Let a:= @R. By construction we have a ¢ dR, so a ¢ 9_R, the closure of the side
boundary of R.

Let @ be the set of points of 0_R closest to a. More precisely,
Q:={q€ 0d_R|s(a,q) <s(a,p) for all p € 0_R}. (4.6.3)

The set Q is not empty because d_R is closed.

Let @ :=s(a,0_R) and define the spherical cap C := S(a,®) € S?. We must have
s(a,q) = ® for every point q € @, so that CnQ = Q.

Let b € Q and consider the meridian ©b and the great circle B:= 0buU—0b.

Express a and b in spherical polar coordinates as

a="(a,...,aq),

b= T(ﬂla" '76d)7

respectively. The constructions of EQ(d,N) and EQP(d,N) and the fact that m; > 2
imply that a and b differ in longitude by at most Z (mod 2r). More precisely, we

must have
oy — B1] € (0, g} (mod 2r).

Now recall that the longitude of any point of ©b is g, and the longitude of any
point of — @b is 7+ B1( mod 27). Therefore a ¢ ©b and a ¢ —®b. Since a is not one
of the poles, we have a ¢ B.

Since a ¢ B, the point a and the great circle B define a great 2-sphere corre-

sponding to G(b,a) of Lemma 2.3.7. The great 2-sphere G(b,a) is split by B into
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two spherical caps each of spherical radius Z. Let e be the centre of one of the two
caps. Then the other centre is —e.

We now have two cases.

1. The point a is one of e or —e. In this case s(a,c) = Z for every point ¢ € B.

Since s(a, 9'R) < Z, we must have
s(a,dR) = s(a, d'R) < ®. (4.6.4)

2. There is a unique great circle D which contains a, e and —e. The great circles
B and D intersect at right angles at two antipodal points, which we call d and
—d. We have s(a,d) +s(a,—d) = 7. We cannot have s(a,d) = s(a, —d) because we
have excluded case 1. Therefore let d be the closer of these two points to a.
By Lemma 2.3.6 d is the unique point of B which is closest to a.

Express the point d using spherical polar coordinates as d = Y(61,...,dq4). We
now have two subcases.
(a) The point d lies on the open arc —o®b. This implies that d # b and

d ¢ 0_R. We have §; = 7+ 3, and so
‘041 —(51| > g (HlOd 27‘(‘).

Therefore d lies outside of R. The shortest geodesic arc from a to d must
pass through 9!R since if it passed through some point q € 9_.R we would
have s(a,0_R) < s(a,d) < s(a,b), which contradicts the definition of the
point b. Therefore (4.6.4) must hold.
(b) The point d lies on the closed arc ©b. We have ®bNR ¢ d_R. This again
splits into two subcases:
i. The point d lies outside R. By the same argument as case 2a we see
that (4.6.4) must hold.
ii. We have d = b. In this case s(a,b) = ® = s(a, B) and the point b is

the unique point of B > ©b which is closest to a.
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By the same arguments as above, for all points q € Q, either (4.6.4) holds or

® < s(a,0'R) and CNd®q=q. Therefore either (4.6.4) holds or

s(a,0R) = & < s(a, O'R) (4.6.5)

and

CNOIR=CNOQ = Q. (4.6.6)

From this point of the proof onward, we exclude the cases where (4.6.4) holds.
The cap C intersects B only at the point b. Since B contains the poles and b is
not a pole, C does not contain either pole.

Now consider the equatorial image of the cap C. By Lemma 2.3.10 we have

C =S¥ (Ila,¢),

where

sing = 0% (4.6.7)
We also have
NQ=I(CNDI.R)=IICNII_R=T1CNHIIR,

where the last equation is a consequence of Lemma 2.3.13.
Since @ is not empty, I1Q is not empty, and so s(Ila,dIIR) is at most ¢. But
any spherical cap ¢’ = S(a,®’) with ® < & does not intersect ©d._R at all, and so

s(Ila, 1IR) = ¢. ]
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Proof of Lemma 4.3.7.

The result is an immediate consequence of Lemma 3.5.6, since we have

T(_ai—laﬁF,i)'i'B(ai’ﬁ) M(—a;l a; ﬁF)ﬁ

\Il(—ai,l, a;, 79F.,i) = sin

95+ 051 L
= gin ——"— +2 il m; = = 1.

O
Proof of Lemma 4.3.8.
We use Lemmas 3.5.8 and 3.5.9, which yield
U(r, 3, — 1) = sin LG ) ;— B(8,m = 9) M(r, 8,7 — 19)1%1
= sin (7r— B(T”?_‘SF);T(ﬂ"g_‘SF)) M(B,7,9 — 6p) ™1
_ sin 18,0 = 0r) ;B(T’ﬁ_m M(B, 7,9 — 6p) T = U(B, 7,0 — ).
O

Proof of Lemma 4.53.9.

For N > 2 > Ny(1/2), where Ny is defined by (3.5.8), using the estimate (3.5.49)

we have
sindy > Ju(z) (wdd_lf 51 = K (m)N4,
where
K.(2) := Ju(2) (Zd“_’j )b , (4.6.8)
with J. defined by (3.5.45). O

Proof of Lemma 4.5.10.
Throughout this proof, we assume that /' > z where =z > Ny(5), where Ny is

defined by (3.5.8), and z satisfies (3.5.62). We therefore have n > 5.
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We have (1,5,9) €D, =D; UD,, .
For the top collar, (r,3,9) € Dy, (3.5.38) gives 7 =0, B € [-1/2,1/2], ¥ = 9. Using

Lemma 2.3.16 we have

V(B(8,0)) = V(de + 67) + BVr > V(0 + b5) — 2.

2
Since n > 5, we have 9, + (1 —n)dp € [0, 7— 9. —ndr], and we can use (3.5.67) to obtain
V(B(5,00)) > V(e +07) — "2 > V(I + (1 - 1)),
Therefore, using Lemma 2.3.16 again, we have
B(3,9.) > Y.+ (1 —n) dp. (4.6.9)
Therefore (3.5.21) and (3.5.24) yield

A(Tvﬁvﬁ) = A(Ovﬂvﬁc) = B(ﬁvﬁc) - T(Ovﬁc) = B(ﬂ, 19c) — ¥ > (1 — "7)5F (4610)

For (r,8,9) € D, (3.5.44) gives T € [~1/2,1/2], B € [-1/2,1/2], ¥ € [Op2,7/2 — 6£/2].
Since n > 5, we have ¥ + (1 —n) dp € [Je, 7 — 9. — nép]. Using Lemma 2.3.16, (3.5.22)

and (3.5.67) we now have
1%
V(B(B,9)) = V(I +6r) + VR = V(0 +6r) = - > V(0 + (1= 1)dr).
Using Lemma 2.3.16 again, we therefore have

B(B,9) >0 + (1 — ). (4.6.11)
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Since n > 5, we have ¥ € [J.,7 — 9. — ndr]. Using Lemma 2.3.16, (3.5.21) and

(3.5.67) we also have

V(T(r,9)) = V(9) + Ve < V(D) + V—; < V(I + nop),

so that

9 +ndp > T(r,9).

Combining (4.6.11) and (4.6.12), and using (3.5.24) we therefore have

A(r, B,9) = B(B,9) — T(r,9) > (1 — 2n)dp.

Combining (4.6.10) and (4.6.13) we have

Define

with pg(z) defined by (3.5.11).
The estimate (3.5.52) now yields

AT, 3,9) > K/ A(z)N ™14,

where

with py(z) defined by (3.5.11).

(4.6.12)

(4.6.13)

(4.6.14)
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We also have
K'a(x) /' K'a(00) i= (1—2n) wi (4.6.15)

as x — oo, since pr(r) /1 as z — oo, by (3.5.12). 0

Proof of Lemma 4.5.11.

Throughout this proof, we assume that N/ > z where = > Ny(5), where Ny is
defined by (3.5.8), and = satisfies (3.5.62). We therefore have n > 5. These assump-
tions are at least as strong as those used in the proofs of Lemma 3.5.25 and Lemma
4.3.10, so we use parts of those proofs here as well.

We have (1,8,9) e D, =Dy UD,,..

For the top collar, (r,3,9) € Dy, (3.5.38) gives 7 = 0, g € [-1/2,1/2], ¥ = V..

Therefore

T(r,0) + B(B,9) _ Ve +B(S,9.)

2 2

From (4.6.11) we have B(3,9.) > 9. + (1 — n)dp. Therefore

7(r,9) + B(8,9) L—n
5 >, + 5 op > V..
Using (3.5.20) we therefore have
Ve + B(B,9c)

U(r, B,9) = (0,3, 9.) = sin M(0, B,9.) T4

2
> sind. M(0,3,9,) 77 = sind, (V(0.) +ﬂ)1f1d

1

> sind,. (y(ﬂc) + 2) o )

This implies that

. d—1
U(r, g9yt s S Ve 4.6.16
(7'767 ) y(ﬁc)‘i‘% ( )
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Using (2.3.41), (3.2.1), (3.2.3), (3.5.2), (3.5.20) and (3.11.23) and we have
V(o) = YWt 0r) ZV0e) O g 4gey = Pt 4 op). (4.6.17)
Vr Vn 5
We therefore define
5d71
P (4.6.18)
p
so that (4.6.16) and (4.6.17) yield
2sin?"! 9
v ¥)*! < : 4.6.1
(7.8,0)"" > 2 (9. 1 o) T A (4.6.19)
From (3.2.3) and (3.5.10) we have the estimate
A€ [pu(e)™ pr(@)Y] 677 = [pu (@)~ pr(e) '] w;% N (4.6.20)

where p;, and py are defined by (3.5.11).

We now use (4.6.19) and the estimates (3.5.49), (3.5.57) and (4.6.20) to obtain

o 2 o) () T
\11(7—7 ﬁv ﬁ)d_l = pH(fU)_lwdd 1 — a—1 NT
2 <(wdd1) () T+ pH(I)) + pr(2)~!
For (r,3,9) in D; we therefore have
U(r, 3,9) > Cy () N7, (4.6.21)

where

(2 (o) = s out) pL<x>—1> :

For (7,8,9) € Dy, (3.5.44) gives 7,8 € [-1/2,1/2], ¥ € [Ip.2,

27 @) ()
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From (4.6.11) we have B(3,9) > 9 + (1 — n)dr. From (3.11.6) we have 7(r,9) >

¥ —nép. Therefore

T(7,9) + B(5,9) -9+ 1—2776F 59
5 :
Using (3.5.20) we therefore have
w(r, 6,9) = sin LD EBED 0 g g)ets

2
>sind M(r, ,9) 77 =sind (Y(0) +7+5) "

> sing (YY) +1)T 7.

This implies that

sin?~ 1y

d—1
\I/(Ta B, 19) = W

(4.6.22)

Using (2.3.41), (3.2.1), (3.2.3), (3.5.2), (3.5.20) and (3.11.23) and we have

V() = V(W +9r) = V() , < or DV +6p) = L sind=1(9 + 6p). (4.6.23)
Vr Vr o4t

From (4.6.18) and (4.6.22) we therefore have

Asin? 19
U 9 > =: f(0). 4.6.24
(r,5,9) > e A f9) (4.6.24)

We now find a lower bound for f(9) by first showing that f(¥) is monotonic

increasing in ¢, then estimating f(¥) at the low end of the domain.
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We have

ofw) 9 Asin®'w

o0 9V sin® NI+ 0p) + A

2 \sind=1y g 0, . 4 -1
B Sinda:gl(ﬁ—l-(sF)—l-)\ AT g5 (s o+ 0) )

— 1) Asin®™ cos e — 1) Asin“™ +dF) cos
d—1) Asin?9 cos? . 4oy (d—1) AsinT(0 +9 U

sin! (9 + 0p) + A (sin® (9 + 6F) +)\)2
(d—1) Asin®29 cos®

= (Sind_1(19+5F)+)\)2 (sindQ(rﬁ—i—éF) (sin(19+5F)—SiIM9) +)\)

d—1) Asin?29 cos?
(sin?™1 (9 + 65) + )

>Of0r19€<O7T5F),

op

:2( (sind2(19+5p) sin% cos (19—|— 2) +/\)

"2 2

where the last equality results from Lemma 2.2.1. Therefore from (4.6.24) we have

Asin?~! I

d—1 —
80T > F0) 2 f0ra) = G (4.6.25)
We now use (4.6.25) and the estimates (3.5.57) and (4.6.20) to obtain
% d—1
d—1 JF’Q(x)d_l ((de1> +/)L($)> 1—d
(1, 8,9 = pp (), T " g - N
((55)" = s 20m(@)) (o)
For (r,3,9) in D,,, we therefore have
\D(Tvﬁaﬁ) 2 C\/I/,m-‘,-(‘r) Nf%a
where
’ 1 1 JF72(I) <(wdd1)d+pL(x)>
Cy g (@) = pr(2)Tw] (4.6.26)

1 d—1 =
(((wdl)d Jo(x) T +2,0H(5ﬂ)> +PL($)1>

We now set Cy(z) := min(Cy ,(2), Cy 4 (7). 0






CHAPTER 5

Separation, discrepancy and energy

“ .. The analytical and geometrical difficulties of the problem of the
distribution of the corpuscles when they are arranged in shells are much
greater then when they are arranged on rings and I have not yet succeeded

i getting a general solution. ...”

— Thomson, [155, p. 255].

In this chapter we examine when and how, for a given Riesz potential, the well
separation and weak-star convergence of a sequence of spherical codes implies that
the corresponding sequence of energies converges to the energy double integral. This

problem was posed by Saff during the author’s visit to Vanderbilt University.

5.1 Enmergy, weak-star convergence and separation

Later in this chapter we will prove the following theorem.

Theorem 5.1.1. Let X be a sequence of S¢ codes which is well separated as per
Definition 2.7.2 and weak-star convergent as per Definition 2.11.3. Then for s
(0,d), the normalized Riesz s energy of the codes in the sequence converges to the

normalized spherical double integral of the energy, that is

E/(X)Us —=ZUgs as {£— oo,

where B, and T are defined by (2.11.6) and (2.11.5) respectively.

189
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Ezxamples.

The following types of sequences of spherical codes satisfy the criteria of Theo-
rem 5.1.1 and are therefore sequences where for s € (0,d) the s energy converges to
the energy double integral.

1. Minimum energy sequences.

For s’ € (d—1,d) let Qg = (1,04 2,...) be the sequence of S? codes such that
Qs | = N and such that |Qy a| has the minimum s’ energy for S¢ any code
with & codepoints.

It is known that Qg is both weak-star convergent [93, Chapter 2, 12, pp. 160—
162] [39, Theorem 3, p. 236] [69, Theorem 1.1 p. 176] and well separated [89,

Theorem 8, p. 179]. Therefore, for s € (0,d), Theorem 5.1.1 implies that
E/(Q)U, — T U,.

2. Well-separated sequences of spherical designs [73].
See Section 5.3.
3. Well-separated, diameter-bounded equal area sequences [3, 147, 120, 167, 88].

See Section 5.4.

5.2 Energy, spherical cap discrepancy and separation

The rate of convergence to zero of the normalized spherical cap discrepancy of a well
separated sequence of spherical codes imposes a bound on the rate of convergence
of the Riesz s energy. This rate is given by the following theorem.

Theorem 5.2.1. Let X = (X,,¢ € N) be a sequence of S* codes which is well separated
as per Definition 2.7.2 with normalized spherical cap discrepancy converging as
disc(X,) = O(¢~%), where disc(X,) is defined by Definition 2.11.5 and a > 0. Then
for s € (0,d), there is an upper bound for the Riesz s potential which converges to

the energy double integral TU, at the rate of at least O (f(ﬁ‘l)“).
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In other words, if there exist Ca,Co such that each X, = {x¢1,...,%x¢n,} € X

satisfies

s = %0 > Ay i= Ca Ny 7, (5.2.1)

disc(Xy) < Cy £7° (5.2.2)
then for the potential U, we have

E(X)U, <TU, +0 (ei=1)e). (5.2.3)

5.3 Coulomb energy of spherical designs on S?

Recall from Section 2.9.2 that a spherical t-design is an equal weighted quadrature
rule on the unit sphere which is exact for all polynomials of degree up to ¢. In [73]
it was proved that for a well separated sequence of spherical designs on §? such that
each ¢-design has (¢ +1)? points, the Coulomb energy has the same first term and a
second term of the same order as the minimum Coulomb energy for S§? codes.

This problem was posed by Sloan. The proof in [73] was the joint work of Hesse
and the author.

Here we compare this result with the result obtained by combining Theorem
5.2.1 with the bounds on the spherical cap discrepancy of spherical designs obtained
by Grabner and Tichy. [64].

First we restate the main results from [73] with notation adjusted to match this
thesis.

Theorem 5.3.1. Let X be a sequence of spherical designs in S* which is well sep-
arated with spherical separation constant Ca as per Definition 2.7.2. Then the
normalized Coulomb energy E,(X)U; of each spherical design X, € X of cardinality

N and strength t is bounded above by

o
\

E((X)U; <1+ Cepy (E+1)72 N
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The constant Cic,) = 0 depends on the separation constant Ca, but is independent of
N and t.

Theorem 5.3.2. Let X be a sequence of spherical designs on S?, such that for some
positive constants u and Ca, if X; € X has cardinality N > 2 and strength t, then
N < p(t+1)2 and the minimum spherical distance between points of X is bounded

below by \C/—AN Then the normalized Coulomb energy of each X; € X is bounded above

by
Ei(X)U; <14 Cepp N3, (5.3.2)

where Cic, . =0 is independent of N.

Here we recall the well known result that ZU; = 1. This is also an immediate
consequence of Corollaries 2.11.9 and 2.11.10.

As we have mentioned in Section 2.10, it is not yet known whether an infinite
sequence of spherical designs exists which satisfies the premise of Theorem 5.3.2. If
such a sequence X exists, Theorem 5.3.2