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Abstract. Numerical methods are in general required foc. the determination of the stable 
configurations of N point charges on a sphere. The stable configurations for N up  to 50 
have previously been ascertained and we extend the calculations here for values up to 101. 
We repon far the first time some remarkable global features of these configurations. We 
show that the minimum energy accurately follows a simple half-integral power law in 1 / N  
over the full range we have investigated. This power law is explicable in terms of the 
idealization of mapping a planar Wigner lattice onto the surface of the unit sphere: the 
pair distribution functions of the larger-N configurations indicate predominant hexagonal 
coordination. The coeficients of the observed power law are closely straddled by values 
calculated on the basis of hexagonal and square Wigner lattices. This highly accurate 
description of the energy permits us to remark on the detailed deviations of the individual 
structures from the general trend. For N t 3 0 ,  we note that structures with N prime are 
relatively less stable, while structures with N equal to 6, 12, 32, 44, 48 and 60 seem more 
stable. 

1. Introduction 

The stable (least energy) configurations of N point charges on a sphere and on a disk 
are of wide-ranging interest, in areas as diverse as botany, chemistry, mathematics and 
condensed matter physics [l-71. Although it might seem at first sight that straightfor- 
ward geometrical considerations would lead to a full description of the configurations, 
this is not so and numerical procedures must be invoked to establish the stable 
configurations [l]. Thus, Weinrach et al [2], have recently used a Monte Carlo 
procedure to infer the symmetries of the stable configurations of N equal charges on 
a sphere, up to N = 50, in the process correcting some earlier geometrically-inspired 
results based on regular polyhedra. 

For larger values of N, because of the multiplicity of configurations having almost 
the same low value of energy, it becomes increasingly difficult to identify with certainty 
the configuration that has the true minimum in energy. A criterion, by which one can 
judge the likelihood that a candidate computer-generated configuration is the stable 
configuration, would be a useful asset. Further, when the stable energies are surveyed 
as a function of N, there are certain values of N, such as 2 , 4 , .  . . which stand out as 
having energies below the ‘norm’, rendering these structures more favourable in  some 
sense. Likewise, for values of N such as 3, 5 , .  . . the stable energies are above the 
‘norm’ and these could therefore be regarded as less favourable. This notion of 
favourability needs to be formulated in a more concrete fashion that provides for a 
quantitative measure of relative stability and from which a deeper understanding of 
structures adopted may be obtained. 
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In this paper we provide a simple analytical formula which represents, to a high 
degree of accuracy, the stable configurational energies for N from 1 to beyond 100. 
This formula is initially introduced as an empirical fit to the data. Subsequently we 
show that it can be formally derived from considerations of the arrangement of the 
point charges in the form of a distorted Bravais lattice on the surface of the sphere. 
The parameters of the empirical fit lie within narrow bounds established on purely 
theoretical grounds. 

2. Empirical fit to data 

To supplement data which is already available in the literature, we have implemented 
a Monte Carlo optimization routine, similar to the prescription of Weinrach et al [2], 
in TurhoAASIC and FORTRAN, and have ca!w!a!ed !he energies ofa!!!he numerica!!y 
stable potential energy minimal structures up to N = 4 2  and then for many values of 
N up to 101. The potential energy is calculated as the sum of interaction energies of 
equal point chages on a unit sphere: 

where the charges 9, are taken as unit and d ,  is the Euclidean distance between the 
charges. As has already been observed [2], the region of the minimum is easily attained 
but convergence to the true minimum is not assured. Our implementation is accurate 
to within about 1" of relative separation of the charged points on the sphere surface, 
which is good enough for our purposes. In addition, Dr Bennett [2] has provided us 
with his calculated values of W for most of N to 50, and N = 60. 

us, and the reported symmetries of those configurations [2], for unit point charges on 
a sphere. Figure 1 shows a graph of W ( N )  versus N for N up to 101. It is striking 
how close the configuration energies lie to a smooth curve. On the scale that has been 
used, scatter in the energies can barely be discerned. Also plotted for comparison are 
the curves of W , ( N )  = N 2 / 2  versus N and of W,( N )  = N (  N - 1)/2 versus N. We( N )  
represents the energy of a continuous charge of magnitude N uniformly spread over 
the unit sphere, while W , ( N )  is the average configurational energy of N point charges 
randomly distributed over the unit sphere, which fact we have confirmed in computa- 
tions. The curves for both these classical formulae lie well above that of W ( N ) .  The 
failure of W , ( N )  as an estimator of W ( N )  is due to the fact that it takes no account 
of the correlations between the positions of the particles. A characteristic of stable 
configurations is that nearest-neighbour distances tend to be comparable in magnitude 
and close contacts between the charges are avoided whereas, with random configur- 
ations, there is no limit to how close neighbouring charges can come to one another, 
which pushes up the configurational energies. 

In the limit N + m the discrete charge distributions become effectively continuous 
so that both W,( N)/ W,( N )  + 1 and W (  N ) /  W,( N ) +  1. In order to display the correct 
asymptotic behaviour, a power series representation of W ( N )  will therefore take the 
form 

T-I.1- the -:-: -..- n-ln..l-+e.4 l r l l  hr\ $-..-A nr r......l:arl tn 
La",= I C V L L L a l l l D  lllr ,,,,1111.1"111 calr"I'3,GY L"C'61C" r r  ,'. ,, l""Ll" "1 '"pp"c" L" 



Energies and spacings of point charges on a sphere 

Table 1. Energies and symmetries of point charges on a sphere. 
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N PtGrp" Wb N F i G r p  W West 

9 
IO 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

C ,  0.000 

Td 3.674b 
D, h 6.475' 

D5h 14.453b 
Dad 19.67Sb 
D,, 25.760b 
Dad 32.717b 
C2" 40.596 
1, 49.165b 
C*" 58.853b 
D6d 69.306b 
D1 80.670b 

0, 9.985b 

T 92.91z 
D,, 106.050b 
C,,  120.084 
C , ,  135.089b 
D,, 150.881 
C,,, 167.641 .. 
Td 185.287 
D, 203.930b 
0 223.347' 

-0.003 
0.508 
1.718 
3.685 
6.443 

10.014 
14.415 
19.659 
25.756 
32.715 
40.542 
49.245 
58.827 
69.295 
80.652 
92.901 

106.048 
120.093 
135.041 
150.894 
167.655 
185.325 
203.907 
223.402 

38 
39 
40 
41 
42 
43 
44 
45 
46 
47 48 

49 
50 
51 
52 
53 

59 
60 
61 

69 
70 
71 

25 C, 243.813b 243.813 
26 C ,  265.133h 265.141 79 

Cs 593.049b 
D,, 626.389b 
TA 660.675b 
D , h  695.917' 
D,, 732.07gb - .  
C .  769.191' 
0, 807.174b 
D, 846.18Sb 
C* 886.17Zb 
C. 927.062' 
0- 968.714b 
C ,  1011.557b 
D,, 1055.183b 

1100.037 
1145.681 
1192.!51 

1490.952 
1543.804 
1598.293 

2064.916 
2127.686 
2191.256 

593.127 
626.499 
660.804 
696.044 
732.219 
769.331 
807.379 
846.365 
886.289 
927.152 
968.955 

1011.698 
1055.383 
1100.008 
1145.576 
!1?2.086 

1490.971 
1544094 
1598.164 

2064.847 
2127.455 
2191.012 

2734.017 2733.736 
27 D,, 287.303b 287.388 80 2806.022 2805.863 
28 T 310.49Ib 310.555 81 2879.435 2878.945 
29 D, 334.627 334.643 82 2953.274 2952.980 
30 C ,  359.604b 359.655 83 3028.419 3027.970 
31 C,. 385.53Ib 385.592 84 3104.487 3103.915 
32 I, ,  412.245 412.454 85 3181.172 3180.814 
33 c, 440.195 440.243 
34 D, 468.904 468.960 90 3580.051 3579.642 
35 c, 498.551 498.605 99 4358.055 4357.805 
36 D, 529.122b 529.181 100 4449.055 4449.057 
37 ci 560.622 560.688 101 4541.035 4541.267 

Point Group, as reponed by Weinrach el 01 [2]. 
bThe lowest potential energy of N unit point charges on a sphere, obtained by a Monte 
Carlo procedure. Those labelledb were supplied by Bennett [ZJ, while the remainder were 
calculated by ourselves. 

Estimate of W from equation (2) (see text). 

where 

p( N)  = a/"+ b / N P  +. . . O < a c p <  . . . .  (3) 
Since p( N) is undefined for negative N, p (  N) need not be analytic at the limit N 00 

and the exponents a, p, . . . are not required to be integers. For sufficiently large N, 
b/ N o  and subsequent terms in the expansion become negligible in comparison with 
the first term and can be neglected. Treating a and D as adjustable parameters and 
fitting (3) to the data points W(80) =2806.022 and W(70) = 2127.686 one obtains 
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Number of point charges, N 

Figure 1. Dependence of the  Monte Carlo minimum energies W( N )  (indicated by C C O S E ~ S ) ,  

the energy of a continuous charge W . ( N )  (uppermost curve) and the average energy of 
randomly distributed charges W.( N )  (central CUNC) on N. 

n = 0.496 and a = -1.084, leaving little doubt that U should be 112. With these values 
of the parameters, equation (3) fits the data for W ( N )  accurately down to about 
N =30. For smaller values of N, the term b / N B  has to be included in the expansion 
to maintain the quality of the fit. The correction required of this term is relatively small 
and p and b cannot therefore be as accurately determined as (Y and a. The value of 
p is found to lie close to 3/2 and b =0.10. By taking p ( N )  to be of the form 

p ( N )  = a / N ” ’ +  b / N 3 l 2  (4) 

and simultaneously varying a and b in a weighted nonlinear least squares analysis 
using 1/N2 as the weight [8], an optimized fit to the W ( N )  data is obtained with 

a = -1.1028 and b = +0.096. 

-0 4 0 1  
0 10 20 30 40 50 60 70 80 90 100 110 

Number of point charges, N 

Figurel. Difference between the configurational energies W( N )  as calculated by the Monte 
Carlo procedure and obtained from equations (2) and (4). Note the expanded energy scale. 
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We do not provide the standard deviations of these parameters since the scatter in the 
data is not random but appears to have a large systematic component, as we discuss 
later. The agreement between equation (4) and the data, as shown in table 1, is extremely 
good all the way down to N =  1. In figure 1 the data and equation ( 4 )  are so close as 
to be indistinguishable. Most data values lie within 0.1 of the fitted relation and several 
lie within 0.01. For the larger values of N the fractional differences between the data 
and equation (4) are of the order 0.02% or less. The deviations of the W ( N )  data 
from equation (4) are shown in figure 2 in an expanded scale, where the systematic 
nature of the deviations can be seen. 

3. Theoretical model 

To simplify the calculation of the configurational energy, we will suppose that, in 
addition to the N point charges, there is a uniform continuous compensating charge 
- N  placed on the sphere. From symmetry considerations, this continuous charge can 
have no effect on the stable arrangement of the point charges, serving only to reduce 
the total energy. The self-energy of this continuous charge is N 2 / 2  and the interaction 
energy between the continuous and the point charges is - N 2 .  When these are combined 
with (2) for the energy of the point charges, the total energy becomes 

N2 
W ( N ) = - p ( N )  

2 

The energetically most favourable arrangement of point, charges in an infinite plane 
is the form of a hexagonal Wigner lattice. The energies of the other two-dimensional 
Bravais lattices have been calculated and they lie somewhat higher in energy [9]. It 
might be expected therefore that the stable arrangement of point charges on a sphere, 
when N is large and the lattice spacing correspondingly small, will closely resemble 
a hexagonal lattice over much of the surface. Hexagonal coordination cannot be 
maintained indefinitely on a sphere without gross distortions developing, and variations 
in coordination are required from place to place to take up the strain [lo]. This global 
characterization is corroborated by the pair distribution functions (PDF$) of the 
larger-N stable configurations. For our purposes we define the PDFn(d) such that 
2nd O ( d )  Ad is the number of pair separations d, in the interval Ad around the value 
d. As an example, figure 3 shows n ( d )  for the N = 100 stable configuration. Peaks 
occur very close to the first four hexagonal lattice nearest-neighbour distances I ,  = I = 
0.381, I ,  = &I =0.660, 1, = 2 I = 0.762 and I ,  = fi I = 1.008, where I is obtained from 
equation (6 )  below. The first peak of n ( d )  is skewed slightly to smaller values of d, 
indicating a small proportion of points with less than 6-fold coordination. In conclusion, 
therefore, the energy of a stable configuration is expected to be greater than that of a 
comparable hexagonal lattice, but not by a large margin. Since there is likely to be a 
small proportion of points with 4-fold coordination, the energy of the square lattice 
can be taken as a plausible upper bound for the configurational energy. 

The theory of two-dimensional Wigner lattices has received considerable attention 
because of its relevance to the ordering of electrons on the free surface of liquid helium 
[ I l l .  It has also been suggested that electrons and holes in semiconductor inversion 
layers [ I21  and quantum-well structures [ 131 undergo Wigner crystallization at low 
densities and temperatures. Our treatment below contains the novel feature that it 
treats a Wigner lattice which has been projected onto a sphere, which gives rise to a 
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Radial Distance 

Figure 3. Pair distribution function O ( d )  far the N = LOO stable configuration. The first 
lour hexagonal nearest neighbour distances I , ,  I,, I, and I, are shown. 

strain energy term. Because of the presence of the compensating continuous charge, 
the Wiper-Seitz cell of each lattice point is electrically neutral and the intercellular 
interactions consequently fall off rapidly with distance, r. When N is large, lattice 
defects are sparse and most cells are surrounded for some distance by a regular lattice. 
A reasonably accurate first estimate of the configurational energy can therefore be 
obtained by assuming, for calculational purposes, a perfect lattice. 

3.1. Hexagonal lattice 

For the stable configuration of N point charges on a unit sphere, each of these charges 
and its cell of compensating negative charge occupy, on average, an area of 47rJ N. 
Assuming a structure resembling a plane hexagonal lattice of lattice spacing I ,  the cell 
area is I ’JfJ2  and so 

, / 87r 
‘=\J5N) ’ 

(6) 

Let r and $ be polar coordinates of a point in the plane, with the origin taken to 
coincide with one of the point charges. Dimensionless Cartesian coordinates normalized 
to the lattice spacing are 

r 
x = - c o s *  

I 

r .  Y =- sin $. 
I 

We project this lattice onto the unit sphere with the mapping 

*-P 

(7) 

8 
r a 2 s i n -  

2 
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where 9 and 8 are the polar angular coordinates of the sphere. This mapping satisfies 
the area-conserving condition r d r  dJI = sin 8 d0 drp. The Euclidean distance between 
two points 

R, = (sin Oi cos ‘pi, sin 0; sin p,, cos 0;) 

Rj = (sin 8, cos pj, sin 8, sin pj, cos 8,). 

(9) 

and 

(10) 

on the sphere is given by 

d,=IR,-RjI={2-2sin 8js in8jcos (~p i -~ j ) -2cos0~cos8j }1 ’Z .  (11) 

If one of the points, say Ri,  is at the origin (the pole of the sphere), then 8<=0 and 

du=(2 -2cos  Rj)’/’=2sin(0j/2)= rj: (12) 

This shows that distances from the origin are unaffected by the projection, although 
distances between points neither of which is at the origin are, in general, altered. 

For small 8, sin 8 = 8 - 8”6, and 8 = 2 sin-’(rj2) = r +  r’j24 and so, from equation 
(7) 

(13) sin 0 = r -  r3j8 = I ( X 2 +  Y2)I” -- ” (xZ+ y 2 ) 3 / 2  

8 

and 

(14) 
12 

2 
cos 8 =  1-r2/2= I - -  (x’+ Y’). 

Using these approximations, it follows from (11) that 

I /  d ,  = l / (  If1’*) + /g/ ( 2 p 2 )  (15) 

where 

f = (X, -x,)’+( Y,- 5 1 2  (16) 

and 

g = a { Z ( X ? +  YT)(X:+ Y : ) - ( X , X j +  Y,Y,)(X?+ Y i + X f +  Y:)}. (17) 

When one of the pair of points is at the origin, g clearly vanishes. 

written 
The contribution of the cell at the origin to the total energy of the lattice can be 

w=Yl/d,  (18) 

where Y denotes a sum over discrete charges and integration over continuous charges, 
using X and Y as integration variables. The sum combines contributions from the 
self-interaction of the continuous charge in the first cell, the interaction of this con- 
tinuous charge with the point charge in that cell, and one half ofthe interaction energy 
of the charges in the first cell with the discrete and continuous charges in all the other 
cells. Considerable cancellation occurs between negative and positive contributions to 
the interaction energy between different cells, particularly when they are far apart, and 
rapid convergence is attained. 
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The total lattice energy for N cells is given by W‘= Nw, and from equation ( 5 )  it 

p(N)=2W‘/N2=(2/N)jPl/d,*. (19) 

(20) 

follows that 

Using equations ( 6 )  and (15) to substitute for I and d,, one arrives at the result 

p (  N )  = a /  N”’+h/ N3/’ 

where 

and 

This establishes a theoretical basis for the functional form of p ( N )  that was found to 
E! :he da!r ex :he ccnf.go:a:icxa! %er&$. Ex f..rs: !e:=, ~ / I ? J ‘ ’ ~ ,  is associated wi:h 
the energy of the plane lattice and the second term, b/N3”, derives from the increase 
in energy ofthe lattice due to distortional effects when it is projected onto the spherical 
surface. In the evaluation of a, because the individual cells are neutral and have no 
dipole moment, the intercellular interactions show a l/rS decrease in magnitude with 
distance, characteristic of quadrupole-quadrupole interaction, and convergence is 
rapid. Io the evaluation of b there are no contributions from the central point charge, 
and the intercellular contributions decrease as 1,’ r3. Numerical integration and summa- 
tion over the various contributions to o and 6 yield 

a=-1.1061 and b=+0.104. 

The value of o is consistent with the energy of the hexagonal Wigner lattice calculated 
by Bonsall and Maradudin [91 using the Ewald method and in agreement with equation 
3.14 of Gann er al [14]. The value for b is a new result. 

3.2. Square lattice 

For a square lattice of N point charges projected onto a unit sphere, the lattice spacing 
is I = ( 4 ~ j N ) ” ~  and o and b are given by 

(23) 

h = 27T’/’Yg/.f.1’2. (24) 

a = ( l / ? r )  1/2jPpllf1/2 

and 

Numerical evaluation of the integrals and summation yield 

a = -1.1002 and b = 1-0.084. 
The value of a is consistent with the lattice energy calculated by Bonsall and Maradudin 
19). the value for b is a new result. 

4. Discussiou and conclusions 

We have been able to derive a simple expression for the minimum energy of N equal 
charges on the surface of a sphere, which involves a series expansion in half-integer 
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powers of I/N. We have established limiting values for the first two coefficients in the 
expansion, based on the idealizations of the point charges lying on either a hexagonal 
or square lattice projected onto a sphere; the values of the coefficients so evaluated 
neatly straddle the values obtained by a nonlinear least squares fit on the data derived 
by numerical procedures. This appears to be the first general consideration of the 
energetics of point charges on a sphere, as opposed to discussion of the structures of 
such systems. 

These results, and the excellent fit of our expression to the data, suggest that we 
have captured the essential physics of the problem in our model. In that case, it 
becomes worthwhile to consider some of the residual deviations of the data from the 
model. Since the data becomes less reliable at larger values of N, where repetitions of 
the numerical procedure have to be done sparingly as they are very costly in computer 
time (more than three hours per simulation on an IBM 3083J mainframe computer 
for N = loo), we will concentrate on the energies for N s35. The energy differences 
from our fitted formula for 1 s N =z 35 is shown with a highly expanded scale in 
figure 4. 

.. + 
W 0.05 

E; - ... 0 

m 0 
CJ 
0) c 

E 5 -0.05 
6 

-0.10 
0 5 10 15 20 25 30 35 

Number of point charges, N 

Figure 4. Difference between the Monte Carlo and fitted configurational energies for 
N 4 3 5 .  Note the considerably expanded energy scale. 0:  N prime. 

The differences observed are small, but show some consistent patterns-with intrigu- 
ing deviations. One observes an oscillating pattern of relative stability (low values of 
the difference) and relative instability (high values). The most striking point is that 
the principal relative instabilities appear for prime values of N for 1 S N s 30, excepting 
N = 2 and 17 only, while the value for N = 13 is relatively small. Smaller relative 
instabilities may also occur when N is odd. The principal locally more stable energy 
values occur with high symmetry structures for N equal to 2 , 4 , 6  and 12. Other relative 
stabilities appear for N equal to 10, 18, 22, 24 and 27, also for fairly high symmetry. 
Beyond N = 30 the pattern is less clear. There are strong local stabilities for N =32 
and for N =60, which latter may bear some relationship to the truncated icosahedron. 
This structure is generally recognized as being exceptionally stable, being represented 
in nature by the recently-discovered C,, molecule buckminsterfullerene [61. (The other 
stable fullerene structures, C,, and CX4, are not described by our model as they do 
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not approximate to spherical in shape.) Thus, the following are observed to he most 
stable relative to their neighbours: N = 6, 12, 32, 44, 48 and 60. 

We offer here a tentative suggestion as to the lines an explanation of these observa- 
tions might take, in the realization that there may well he some subtle underlying rules 
that have eluded us. Thus, there appears to be difficulty in organizing a good lattice 
on a sphere with a small and odd (or worse, prime) number of points, while numbers 
which permit high symmetry are stable. Clearly there remains much detail to be 
understood in this apparently simple problem, such as, for example, the large scale 
oscillation apparent in figure 2; we  have only scratched the surface of its fascination. 

We also suggest that it may be worthwhile to examine the energetics and spacing 
of points on a sphere with non-Coulombic interactions [l], for a better understanding 
of the structures that might be engendered [7, 151. 

L Glasser and A G Every 
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Note odded in proof Subsequent to the submission of our paper. Erber and Hackney [IS] have published 
a list of energies of N unit charges an a unit sphere, far 2 s  N s 6 5 .  Their results agree rather well with 
those we report here, with Some of our results being lower in energy than theirs, and vice versa; the 
discrepancies do not exceed about 0.01. In addition, some of the gaps in our data are now filled in, and 
the data to N e 6 5  shows a smoother profile than in our figure 2. The best fit parameters for (4) far the 
lowest energy values lor 2 s  N s 6 5  and a weighting of I/" are 

4 =-1.1039 b = +0.105. 

Our energy values for N > 65 are, from these results, clearly upper bounds to the true values, having been 
insufficiently optimized. 
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