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Abstract. A Riemann zeta function is a function which is analytic in the complex plane,

with the possible exception of a simple pole at one, and which has an Euler product and a
functional identity. The functions originate in an adelic generalization of the Laplace trans-

formation which is defined using a theta function. Hilbert spaces, whose elements are entire

functions, are obtained on application of the Mellin transformation. Maximal dissipative
transformations are constructed in these spaces which have implications for zeros of zeta

functions. The zeros of a Riemann zeta function in the critical strip are simple and lie on the

critical line. The Euler zeta function, Dirichlet zeta functions, and modular zeta functions
are examples of Riemann zeta functions. An application is a construction of Riemann zeta

functions in the quantum theory of electrons in an atom.

Since the proof of the Riemann hypothesis is essentially the same for all zeta functions,
a unified treatment is given which emphasizes similarities of structure. Those zeta func-
tions which originate in locally compact fields have an elementary structure which is a key
to understanding other zeta functions which appear in the related context of locally com-
pact skew–fields. The advantage of locally compact skew–fields lies in their relationship
to the three–dimensional space in which the quantum mechanical theory of electrons is
formulated. A construction of zeta functions results which interprets quantum mechanics
as number theory.

§1. Locally compact skew–fields

An Euclidean skew–field is an associative algebra over the rational numbers with basis
consisting of the unit and elements i, j, k satisfying the identities

ij = k, jk = i, ki = j,

ji = −k, kj = −i, ik = −j,
i2 = −1, j2 = −1, k2 = −1.

An element

ξ = t+ ix+ jy + kz
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of the Euclidean skew–field has four coordinates x, y, z, and t taken in a field which
is the center of the algebra. The conjugation of the Euclidean skew–field is the anti–
automorphism ξ into ξ− of order two which takes ξ into

ξ− = t− ix− jy − kz.

The product

ξ−ξ = t2 + x2 + y2 + z2

is then a self–conjugate element of the algebra. An element of the algebra is said to be
intrinsically nonnegative if for some nonnegative integer r it is a sum

ξ−0 ξ0 + . . .+ ξ−r ξr

with ξ0, . . . , ξr elements of the algebra. It is assumed that the sum vanishes only when
ξ0, . . . , ξr all vanish. An intrinsically nonnegative element of the algebra is said to be
intrinsically positive if it is nonzero. Since the algebra is a skew–field, an intrinsically
positive element is invertible.

An intrinsically convex combination of elements a and b of the algebra is an element

a(1− h) + bh

defined by an intrinsically nonnegative element h such that 1−h is intrinsically nonnegative.
A subset of the algebra is said to be intrinsically convex if it contains the intrinsically convex
combinations of any pair of elements.

A nonempty subset of the algebra, which is intrinsically convex, is said to be an intrinsic
disk if for every element a of the set and for every element b of the algebra an intrinsically
positive element h of the algebra exists such that 1 − h is intrinsically nonnegative and
such that

a(1− h) + bh

belongs to the set.

It will be shown that the intersection of intrinsic disks U and V is an intrinsic disk if it is
nonempty. The intersection is intrinsically convex since U and V are intrinsically convex.
Assume that a is an element of the intersection of U and V and that b is an element of
the algebra. Since U is an intrinsic disk, an intrinsically positive element h of the algebra
exists such that 1 − h is intrinsically nonnegative and such that

a(1− h) + bh

belongs to U . Since V is intrinsically convex, an intrinsically positive element k of the
algebra exists such that 1− k is intrinsically nonnegative and such that

a(1− k) + bk
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belongs to V . Since U is intrinsically convex,

a(1− hk) + bhk = a(1− k) + [a(1− h) + bh]k

belongs to U . Since V is intrinsically convex

a(1− hk) + bhk = a(1− h) + [a(1− k) + bk]h

belongs to V . Since the self–conjugate elements of the algebra commute with every element
of the algebra, hk is an intrinsically positive element of the algebra such that

1− hk = (1− k) + (1− h)k

is intrinsically nonnegative and such that

a(1− hk) + bhk

belongs to the intersection of U and V .

A subset of the algebra is said to be intrinsically open if it is a union of intrinsic disks.
An Euclidean skew–field is assumed to be a Hausdorff space in a topology whose open sets
are the intrinsically open sets. Addition is continuous as a transformation of the Cartesian
product of the algebra with itself into the algebra when the algebra is considered in the
intrinsic disk topology.

It will be verified that the closure of an intrinsically convex set C is intrinsically convex.
An element of the intrinsically convex span of elements u and v of the closure of C is of
the form

u(1− h) + vh

with h an intrinsically nonnegative element of the algebra such that 1 − h is intrinsically
nonnegative. If an intrinsic disk U contains the origin, elements a and b of C exist such
that u− a and v − b belong to U . Since C is intrinsically convex,

a(1− h) + bh

belongs to C. Since U is intrinsically convex,

[u(1− h) + vh]− [a(1− h) + bh] = (u− a)(1− h) + (v − b)h

belongs to U .

An intrinsically convex set C can be enlarged using an element s of the algebra which
does not belong to C. The set C(s) is defined as the set of intrinsically convex combinations

s(1− h) + ch

with c an element of C and with h an intrinsically positive element of the algebra such
that 1− h is intrinsically nonnegative. It will be verified that C(s) is intrinsically convex.
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Assume that a and b are elements of C and that h and k are intrinsically positive elements
of the algebra such that 1 − h and 1 − k are intrinsically nonnegative. It will be shown
that the intrinsically convex span of the elements

s(1− h) + ah

and
s(1− k) + bk

of C(s) is contained in C(s). If t is an intrinsically nonnegative element of the algebra
such that 1− t is intrinsically nonnegative, then

h(1− t) + kt

is an intrinsically positive element of the algebra which is the sum of intrinsically nonneg-
ative elements h(1− t) and kt. Since C is intrinsically convex, the equation

c[h(1− t) + kt] = ah(1− t) + bkt

has a solution c in C. The intrinsically convex combination

[s(1− h) + ah](1− t) + [s(1− k) + bk]t

= s[(1− h)(1− t) + (1− k)t] + c[h(1− t) + kt]

belongs to C(s).

If an intrinsic disk U contains s and if c is an element of C, then an intrinsically positive
element h of the algebra exists such that 1− h is intrinsically nonnegative and such that

s(1− h) + ch

belongs to U . If C is nonempty, then C(s) is an intrinsically convex set whose closure
contains s.

An application of the Zorn lemma is made to an intrinsic disk A. Every nonempty
intrinsically convex set which is disjoint from A is contained in a maximal intrinsically
convex set which is disjoint from A. Since the closure of an intrinsically convex set which
is disjoint from A is an intrinsically convex set which is disjoint from A, a maximal intrin-
sically convex set which is disjoint from A is closed for the intrinsic disk topology. It will
be shown that the complement of a maximal intrinsically convex set C which is disjoint
from A is intrinsically convex. This result is a generalization of the Hahn–Banach theorem
[12].

If an element s of the algebra does not belong to C, then the intrinsically convex set
C(s) contains C. Since the closure of C(s) is not contained in C, an element of C(s)
exists which belongs to A. An element b of C exists such that the intrinsically convex
combination

a = s(1− h) + bh
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belongs to A for some intrinsically positive element h of the algebra such that 1 − h is
intrinsically nonnegative. Since A is an intrinsic disk, the element h can be chosen so that
h and 1− h are intrinsically positive.

It will be shown that the intrinsically convex span of elements s0 and s1 of the comple-
ment of C is contained in the complement of C. Elements b0 and b1 of C exist such that
the intrinsically convex combinations

a0 = s0(1− h0) + b0h0

and

a1 = s1(1− h1) + b1h1

belong to A for intrinsically positive elements h0 and h1 of the algebra such that 1 − h0

and 1 − h1 are intrinsically positive. An intrinsically convex combination s of s0 and s1

satisfies the identity

s[(1− h0)(1− k) + (1− h1)k] = s0(1− h0)(1− k) + s1(1− h1)k

for an intrinsically nonnegative element k of the algebra such that 1 − k is intrinsically
nonnegative. Since C is intrinsically convex, the equation

b[h0(1− k) + h1k] = b0h0(1− k) + b1h1k

has a solution b in C. Since A is intrinsically convex,

a = a0(1− k) + a1k

belongs to A. Since

a = s[(1− h0)(1− k) + (1− h1)k] + b[h0(1− k) + h1k]

is an intrinsically convex combination of s and b which does not belong to C, since b
belongs to C, and since C is intrinsically convex, s does not belong to C.

If A is an intrinsic disk and if C is a maximal intrinsically convex set which is disjoint
from A, then the complement of C is an intrinsic disk.

If an intrinsic disk A has a nonempty complement which is intrinsically convex, then
the complement of the closure of the intrinsic disk is an intrinsic disk. If a is an element
of A and if b is an element of the complement of A, then the set of self–conjugate elements
h of the algebra such that

a(1− h) + bh

belongs to A is intrinsically convex. The set of self–conjugate elements h of the algebra
such that

a(1− h) + bh
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belongs to the complement of the closure of A is intrinsically convex. A unique self–
conjugate element h of the algebra exists such that

a(1− h) + bh

does not belong to A and does not belong to the complement of the closure of A.

The Euclidean matrix space is the locally compact ring of square matrices of rank two
with complex numbers as entries. A complex number is written α+ ιβ for real numbers α
and β with ι denoting the imaginary unit. Complex conjugation is denoted ξ into ξ∗. The
real conjugation of the Euclidean matrix space is the automorphism ξ into ξ∗ of order two
which takes (

A B
C D

)
into

(
D∗ −C∗
−B∗ A∗

)
.

The complex conjugation of the Euclidean matrix space is the anti–automorphism ξ into
ξ− of order two which takes (

A B
C D

)
into

(
A∗ C∗

B∗ D∗

)
.

The real conjugation of the Euclidean matrix space commutes with the complex conjuga-
tion of the Euclidean matrix space. The Euclidean skew–plane is a locally compact skew–
field whose elements are the elements of the Euclidean matrix space which are left fixed
by the real conjugation of the Euclidean matrix space. The conjugation of the Euclidean
skew–plane is the restriction to the Euclidean skew–plane of the complex conjugation of
the Euclidean matrix space. The Euclidean skew–plane is an Euclidean skew–field with

i =

(
0 −1
1 0

)
j =

(
ι 0
0 −ι

)
k =

(
0 ι
ι 0

)
.

The Euclidean line is the locally compact field whose elements are the self–conjugate
elements of the Euclidean skew–plane.

The intrinsically nonnegative elements of the Euclidean skew–plane are the nonnegative
real numbers. The intrinsically positive elements of the Euclidean skew–plane are the
positive real numbers. The intrinsically convex subsets of the Euclidean skew–plane are
the convex subsets. The Euclidean modulus of an element ξ of the Euclidean skew–plane
is the nonnegative square root |ξ| of ξ−ξ. The intrinsic disk topology of the Euclidean
skew–plane is the metric topology defined by the metric distance |η− ξ| between elements
ξ and η of the Euclidean skew–plane. The intrinsic disks of the Euclidean skew–plane are
the nonempty convex sets which are open for the Euclidean topology.

The known structure of the Euclidean skew–plane gives information about the structure
of an Euclidean skew–field. If an intrinsic disk of an Euclidean skew–field has a nonempty
complement which is intrinsically convex, then an isomorphism exists of the Euclidean
skew–field into the Euclidean skew–plane such that the given intrinsic disk is the inverse
image of a nonempty convex open subset of the Euclidean skew–plane with nonempty
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convex complement. The isomorphism commutes with conjugation and is continuous from
the intrinsic disk topology of the Euclidean skew–field to the Euclidean topology of the
Euclidean skew–plane. The intrinsic disk topology of an Euclidean skew–field is the weak
topology induced by the isomorphisms of the Euclidean skew–field into the Euclidean
skew–plane which commute with conjugation.

The Euclidean skew–diplane is a locally compact skew–field which is identical with
the Euclidean skew–plane. The real conjugation of the Euclidean skew–diplane is the
identity transformation. The complex conjugation of the Euclidean skew–diplane is the
anti–automorphism of order two which is the conjugation of the Euclidean skew–plane.
The Euclidean diline is a locally compact field which is identical with the Euclidean line.
The conjugation of the Euclidean diline is the identity transformation. An element ω of
the Euclidean skew–plane is said to be a unit if ω−ω is the unit of the Euclidean line. If
ω is a unit of the Euclidean skew–plane, an automorphism of the Euclidean skew–plane,
which commutes with the conjugation of the Euclidean skew–plane, is defined by taking ξ
into ω−ξω. The automorphism is the identity transformation if, and only if, ω is a unit of
the Euclidean line.

A group of order eight, which is a normal subgroup of order three in a group of order
twenty–four, is formed by the units

±1, ±i, ±j, ±k

of the Euclidean skew–plane. The sixteen remaining elements of the group of order twenty–
four are the units

±1
2
± 1

2
i± 1

2
j ± 1

2
k

of the Euclidean skew–plane. An integral element of the Euclidean skew–plane is a linear
combination with integer coefficients of the elements of the group of order twenty–four. If
ξ is a nonzero integral element of the Euclidean skew–plane, ξ−ξ is a positive integer.

The ring of integral elements of the Euclidean skew–plane admits an Euclidean algo-
rithm. If α is an integral element of the Euclidean skew–plane and if β is a nonzero
integral element of the Euclidean skew–plane, then integral elements γ and δ of the Eu-
clidean skew–plane exist such that the identity

α = βγ + δ

and the inequality
δ−δ < β−β

are satisfied. A preliminary choice of γ is made as a linear combination of i, j, k, and 1
with integer coefficients. The Euclidean algorithm for integers permits a choice of γ so
that the inequalities

−1 ≤ i(γ − α/β)− − (γ − α/β)i ≤ 1

and
−1 ≤ j(γ − α/β)− − (γ − α/β)j ≤ 1
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and
−1 ≤ k(γ − α/β)− − (γ − α/β)k ≤ 1

and
−1 ≤ (γ − α/β)− + (γ − α/β) ≤ 1

are satisfied. These inequalities imply the inequality

δ−δ ≤ β−β.

The choice of γ needs to be improved only when equality holds. This is possible since

ω = γ − α/β

is then an element of the group of order twenty–four which does not belong to the group
of order eight. The new choice of γ is made so that δ is zero.

The right ideals of the ring of integral elements of the Euclidean skew–plane admit
generators. If the ideal contains a nonzero element, a nonzero element β of the ideal exists
which minimizes the positive integer β−β. Every element α of the ideal is a product

α = βγ

with γ an integral element of the Euclidean skew–plane. Nonzero elements α and β of
the Euclidean skew–plane admit a greatest common left divisor. A greatest common left
divisor of α and β is a nonzero integral element γ of the Euclidean skew–plane which is a
common left divisor of α and β such that every common left divisor of α and β is a left
divisor of γ.

The adic skew–plane is a locally compact ring which is obtained by completion of a
subring of the Euclidean skew–plane in a topology for which addition and multiplication
are continuous as transformations of the Cartesian product of the ring with itself into the
ring. The ring contains the elements ξ of the Euclidean skew–plane such that the product
nη is an integral elements of the Euclidean skew–plane for some nonzero integral element
η of the Euclidean skew–plane. Basic neighborhoods of the origin for the ring are the right
ideals of the ring of integral elements of the Euclidean skew–plane which are generated
by nonzero integral elements of the Euclidean skew–plane. The conjugation of the adic
skew–plane is the anti–automorphism ξ into ξ− of order two which continuously extends
the conjugation of the ring of integral elements of the Euclidean skew–plane. An integral
element of the adic skew–plane is an element of the closure of the set of integral elements of
the Euclidean skew–plane. The integral elements of the adic skew–plane form a compact
subring which is a neighborhood of the origin for the adic topology. The adic line is a
locally compact ring whose elements are the elements of the adic skew–plane which are
left fixed by the conjugation of the adic skew–plane. An invertible integral element of the
adic skew–plane is said to be a unit if its inverse is integral. If ξ is an invertible element
of the adic skew–plane, an invertible element η of the Euclidean skew–plane such that the
product ωη is an integral element of the Euclidean skew–plane for some nonzero integral
element ω of the Euclidean skew–plane and such that the product ηξ is a unit of the adic
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skew–plane. The adic modulus |ξ| of ξ is defined as the Euclidean modulus of η. The adic
modulus of a noninvertible element of the adic skew–plane is zero. The identity

|ξη| = |ξ||η|

holds for all elements ξ and η of the adic skew–plane. The adic modulus of ξ− is equal to
the adic modulus of ξ for every element ξ of the adic skew–plane. The adic modulus of ξξ

is a rational number for every element ξ of the adic skew–plane.

The r–adic skew–plane is a locally compact ring which is canonically isomorphic to a
quotient ring of the adic skew–plane. The ring is nontrivial when the positive integer r
is not equal to one. The r–adic skew–plane is obtained by completion of a subring of the
Euclidean skew–plane in a topology for which addition and multiplication are continuous
as transformations of the Cartesian product of the ring with itself into the ring. The
ring contains the elements ξ of the Euclidean skew–plane such that the product ηξ is an
integral element of the Euclidean skew–plane for some nonzero integral element η of the
Euclidean skew–plane such that the prime divisors of the positive integer η−η are divisors
of r. Basic neighborhoods of the origin for the ring are the right ideals of the ring of
integral elements of the Euclidean skew–plane which are generated by nonzero integral
elements η of the Euclidean skew–plane such that the prime divisors of η−η are divisors
of r. The conjugation of the r–adic skew–plane is the anti–automorphism ξ into ξ− of
order two which continuously extends the conjugation of the ring of integral elements of
the Euclidean skew–plane. An integral element of the r–adic skew–plane is an element
of the closure of the set of integral elements of the Euclidean skew–plane. The integral
elements of the r–adic skew–plane form a compact subring which is a neighborhood of the
origin for the r–adic topology. The r–adic line is a locally compact ring whose elements
are the elements of the r–adic skew–plane which are left fixed by the conjugation of the
r–adic skew–plane. An invertible integral element of the r–adic skew–plane is said to be
a unit if its inverse is integral. If ξ is an invertible element of the r–adic skew–plane, an
invertible element η of the Euclidean skew–plane exists such that the product ωη is an
integral element of the Euclidean skew–plane for some nonzero integral element ω of the
Euclidean skew–plane, with the prime divisors of ω−ω divisors of r, and such that the
product ηξ is a unit of the r–adic skew–plane. The r–adic modulus |ξ| of ξ is defined as
the Euclidean modulus of η. The r–adic modulus of a noninvertible element of the r–adic
skew–plane is zero. The identity

|ξη| = |ξ||η|

holds for all elements ξ and η of the r–adic skew–plane. The r–adic modulus of ξ− is
equal to the r–adic modulus of ξ for every element ξ of the r–adic skew–plane. The r–adic
modulus of ξ−ξ is a rational number for every element ξ of the r–adic skew–plane.

A theorem which originates with Diophantus and which was confirmed by Lagrange
states that every positive integer is the sum of four squares. It follows that every positive
integer is of the form ω−ω for an integral element ω of the Euclidean skew–plane. The
number of such representations is determined using the Euclidean algorithm for integral
elements of the Euclidean skew–plane. If a and b are relatively prime positive integers, the
number of representations of ab times the number of representations of one is equal to the
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number of representations of a times the number of representations of b. Representations
are considered equivalent when the representing integral elements of the Euclidean skew–
plane generate the same right ideal. Each equivalence class contains twenty–four elements.
There is only one equivalence class of representations of any power of the even prime.

When p is an odd prime, the quotient ring of the ring of integral elements of the Eu-
clidean skew–plane modulo the ideal generated by p contains p4 elements. The equivalence
classes are represented as linear combinations of i, j, k and 1 with coefficients in the inte-
gers modulo p. The quotient ring is isomorphic to the quotient ring of the ring of integral
elements of the p–adic skew–plane modulo the ideal generated by p in the adic skew–plane.

A nonzero skew–conjugate element ω of the quotient ring exists such that ω−ω is equal
to zero. The element is constructed of the form

ω = ix+ jy + k

for integers x and y modulo p which satisfy the equation

x2 + y2 + 1 = 0.

Since the number of integers modulo p which are squares of integers modulo p is

1 + 1
2 (p− 1)

and since the number of integers modulo p is equal to p, the set of integers modulo p of
the form 1 + x2 for an integer x modulo p is not disjoint from the set of integers modulo
p of the form −y2 for an integer y modulo p. The existence of a solution of the equation
follows.

A nonzero right ideal of the ring of integral elements of the Euclidean skew–plane
is formed by the elements whose image in the quotient ring belongs to the right ideal
generated by a nonzero element γ such that γ−γ is equal to zero. A generator ω of the
ideal is an integral element ω of the Euclidean skew–plane, whose image in the quotient
ring belongs to the right ideal generated by γ, such that γ belong to the image in the
quotient ring of the right ideal generated by ω. These conditions imply that the positive
integer ω−ω is a divisor of p. Since p is a prime and since ω−ω is not equal to one, ω−ω
is equal to p.

The p–adic skew–plane is a locally compact skew–field. A p–adic plane is a locally
compact field whose elements are the elements of the p–adic skew–plane which commute
with a given integral element γ of the Euclidean skew–plane which is not self–conjugate
and which satisfies the identity

ωγ = γ−ω

for an integral solution ω of the equation

p = ω−ω
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in the Euclidean skew–plane. The identity

ωξ = ξ−ω

holds for every element ξ of the p–adic plane. The conjugation of the p–adic plane is the
automorphism ξ into ξ− of order two which is the restriction of the complex conjugation
of the p–adic skew–plane. The p–adic diplane is a locally compact field whose elements are
the elements of the p–adic skew–diplane on which the real and complex conjugations agree.
The p–adic line is a locally compact field whose elements are the elements of the p–adic
plane which are left fixed by the conjugation of the p–adic plane. The p–adic modulus of
a nonzero element of the p–adic plane is an integral power of p.

The properties of the p–adic plane are used to determine the number of representations
of an odd prime p of the form ω−ω with ω in the p–adic skew–line. The integral elements of
the p–adic plane form a subring of the ring of integral elements of the p–adic skew–plane.
The quotient ring of the ring of integral elements of the p–adic skew–plane modulo the
right ideal generated by p is a ring containing p4 elements of which p2 elements belong to
the quotient ring of the ring of integral elements of the p–adic plane. The quotient ring
of the p–adic plane is a field containing the quotient ring of the p–adic line. The p–adic
plane is constructed using an integral element ω of the Euclidean skew–plane such that

p = ω−ω.

The identity
ωξ = ξ−ω

holds for every element ξ of the p–adic plane. The elements of the p–adic skew–plane
modulo p are of the form

α + ωβ

with α and β in the p–adic plane modulo p. The identity

(α+ ωβ)−(α+ ωβ) = 0

holds in the p–adic skew–plane modulo p if, and only if, the identity

α = 0

holds in the p–adic plane modulo p.

If ξ and η are integral elements of the Euclidean skew–plane such that ξ−ξ and η−η
are equal to p, then η belongs to the right ideal generated by ξ if, and only if, ξ belongs
to the right ideal generated by η. Such representations are considered equivalent. Each
equivalence class contains twenty–four members in the Euclidean skew–plane. If α is the
element of the quotient ring of the Euclidean skew–plane represented by ξ and if β is the
element of the quotient ring represented by η, then β belongs to the right ideal generated
by α if, and only if, α belongs to the right ideal generated by β. Such elements α and β are
considered equivalent. Each equivalence class contains p2 − 1 members. Each equivalence
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class is invariant under multiplication by nonzero self–conjugate elements of the quotient
ring, of which there are p − 1. The number of equivalence classes in the quotient ring is
p + 1. Since the elements of the p–adic skew–plane are equivalent if, and only if, their
images in the quotient ring are equivalent, the number of equivalence classes is p+ 1.

A theorem of Jacobi states that the number of representations of an positive integer
r in the form ω−ω with ω an integral element of the Euclidean skew–plane is equal to
twenty–four times the sum of the odd divisors of r.

The p–adic skew–diplane is a locally compact skew–field which contains the p–adic skew–
plane. The p–adic skew–plane is canonically isomorphic to the ring of matrices which are
linear combinations of

i =

(
0 −1
1 0

)
j =

(
ι 0
0 −ι

)
k =

(
0 ι
ι 0

)
and the identity matrix with coefficients in the p–adic line. The p–adic skew–diplane is
canonically isomorphic to the ring of matrices which are linear combinations of i, j, k and
the identity matrix with coefficients in the field obtained by adjoining a square root of p
to the p–adic line. The real conjugation of the p–adic skew–diplane is the automorphism ξ
into ξ∗ which leaves fixed the elements of the p–adic skew–plane and which is nontrivial on
other elements of the p–adic skew–diplane. The complex conjugation of the p–adic skew–
diplane is the anti–automorphism ξ into ξ− of order two which extends the conjugation of
the p–adic skew–plane and which leaves fixed the multiplies of the identity matrix. The
real conjugation of the p–adic skew–diplane commutes with the complex conjugation of the
p–adic skew–diplane. The p–adic diline is a locally compact field whose elements are the
elements of the p–adic skew–diplane which are left fixed by the complex conjugation of the
p–adic skew–diplane. The conjugation of the p–adic diline is the automorphism ξ into ξ∗ of
order two which is the restriction of the real conjugation of the p–adic skew–diplane. The
p–adic diplane is a locally compact field whose elements of the p–adic skew–diplane which
are linear combinations of elements of the p–adic plane with coefficients in the p–adic diline.
The real conjugation of the p–adic diplane is the restriction of the real conjugation of the
p–adic skew–diplane. The complex conjugation of the p–adic diplane is the restriction of
the complex conjugation of the p–adic skew–diplane.

The r–adic skew–diplane is a locally compact ring which contains the r–adic skew–plane
and which is canonically isomorphic to the Cartesian product of the p–adic skew–diplane
taken over the prime divisors p of r. An element of the r–adic skew–diplane is said to
be integral if its p–adic component is integral for every prime divisor p of r. The real
conjugation of the r–adic skew–diplane is the automorphism ξ into ξ∗ of order two such
that the p–adic component of ξ∗ is obtained from the p–adic component of ξ under the
real conjugation of the p–adic skew–diplane for every prime divisor p of r. The complex
conjugation of the r–adic skew–diplane is the anti–automorphism ξ into ξ− of order two
such that the p–adic component of ξ is obtained from the p–adic component of ξ under
the complex conjugation of the p–adic skew–diplane for every prime divisor p of r. The
real conjugation of the r–adic skew–diplane commutes with the complex conjugation of
the r–adic skew–diplane. The r–adic diline is a locally compact ring whose elements are
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the elements of the r–adic skew–diplane which are left fixed by the complex conjugation of
the r–adic skew–diplane. The conjugation of the r–adic diline is the automorphism ξ into
ξ∗ of order two which is the restriction of the real conjugation of the r–adic skew–diplane.
The r–adic modulus of an element ξ of the r–adic diline is the nonnegative square root
of the element ξ∗ξ of the r–adic line. The r–adic diplane is a locally compact ring whose
elements are the elements of the r–adic skew–diplane whose p–adic component belongs
to the p–adic diplane for every prime divisor p of r. The real conjugation of the r–adic
diplane is the automorphism ξ into ξ∗ of order two which is the restriction of the real
conjugation of the r–adic skew–diplane. The complex conjugation of the r–adic diplane is
the automorphism ξ into ξ− of order two which is the restriction of the complex conjugation
of the r–adic skew–diplane. The r–adic modulus of an element ξ = t + ix + jy + kz of
the r–adic skew–diplane is the nonnegative square root |ξ| of the r–adic modulus of the
element x2 + y2 + z2 + t2 of the r–adic diline. The identity

|ξη| = |ξ||η|

holds for all elements ξ and η of the r–adic skew–diplane.

The adic skew–diplane is a locally compact ring which contains the adic skew–plane
and which has as a quotient ring for every positive integer r a ring which is canonically
isomorphic to the r–adic skew–diplane. The adic skew–diplane is canonically isomorphic
to a subring of the Cartesian product of the p–adic skew–diplanes taken over all primes p.
An element of the Cartesian product determines an element of the adic skew–diplane if,
and only if, its p–adic component is integral for all but a finite number of primes p. An
element of the adic skew–diplane is said to be integral if its p–adic component is integral
for every prime p. The real conjugation of the adic skew–diplane is the automorphism ξ
into ξ∗ of order two such that the p–adic component of ξ∗ is obtained from the p–adic
component of ξ under the real conjugation of the p–adic skew–diplane for every prime p.
The complex conjugation of the adic skew–diplane is the anti–automorphism ξ into ξ− of
order two such that the p–adic component of ξ− is obtained from the p–adic component of
ξ under the complex conjugation of the p–adic skew–diplane for every prime p. The real
conjugation of the adic skew–diplane commutes with the complex conjugation of the adic
skew–diplane. The adic diline is a locally compact ring whose elements are the elements
of the adic skew–diplane which are left fixed by the complex conjugation of the adic skew–
diplane. The conjugation of the adic diline is the automorphism ξ into ξ∗ of order two
which is the restriction to the adic diline of the real conjugation of the adic skew–diplane.
The r–adic modulus of an element ξ of the adic diline is the nonnegative square root |ξ| of
the adic line. The adic diplane is a locally compact ring whose elements are the elements
of the adic skew–diplane whose p–adic component belongs to the p–adic diplane for every
prime p. The real conjugation of the adic diplane is the automorphism ξ into ξ∗ of order
two which is the restriction of the real conjugation of the adic skew–diplane. The complex
conjugation of the adic diplane is the automorphism ξ into ξ− of order two which is the
restriction of the complex conjugation of the adic skew–diplane. The adic modulus of an
element ξ = t + ix + jy + kz of the adic skew diplane is the nonnegative square root |ξ|
of the adic modulus of the element x2 + y2 + z2 + t2 of the adic diline. An element of the
adic skew–diplane is said to be a unit if its adic modulus is one.
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The adelic skew–diplane is a locally compact ring which is canonically isomorphic to the
Cartesian product of the Euclidean skew–diplane and the adic skew–diplane. An element of
the adelic skew–diplane has a Euclidean component ξ+ in the Euclidean skew–diplane and
an adic component ξ− in the adic skew–diplane. The real conjugation of the adelic skew–
diplane is the automorphism ξ into ξ∗ of order two such that the Euclidean component of ξ∗

is obtained from the Euclidean component of ξ under the real conjugation of the Euclidean
skew–diplane and the adic component of ξ∗ is obtained from the adic component of ξ under
the real conjugation of the adic skew–diplane. The complex conjugation of the r–adelic
skew–diplane is the anti–automorphism ξ into ξ− such that the Euclidean component of
ξ− is obtained from the Euclidean component of ξ under the complex conjugation of the
Euclidean skew–diplane and the adic component of ξ is obtained from the adic component
of ξ− under the complex conjugation of the adic skew–diplane. The real conjugation of the
adelic skew–diplane commutes with the complex conjugation of the adelic skew–diplane.
The Euclidean modulus of an element ξ of the adelic skew–diplane is the Euclidean modulus
|ξ|+ of its Euclidean component ξ+. The adic modulus of an element ξ of the adelic skew–
diplane is the adic modulus |ξ|− of its adic component ξ−. The adelic modulus of an
element ξ of the adelic skew–diplane is the product |ξ| of its Euclidean modulus |ξ|+ and
its r–adic modulus |ξ|−. An element of the adelic skew–diplane is said to be a unit if its
Euclidean modulus and its adic modulus are one. An element of the adelic skew–diplane
is said to be unimodular if its adelic modulus is one.

The adelic skew–plane is a locally compact ring whose elements are the elements of the
adelic skew–diplane which are left fixed by the real conjugation of the adelic skew–diplane.
The conjugation of the adelic skew–plane is the anti–automorphism ξ into ξ− of order
two which is the restriction of the complex conjugation of the Euclidean skew–diplane.
A principal element of the adelic skew–plane is an element whose Euclidean component
has an integral product with a nonzero integral element of the Euclidean skew–plane and
whose adic component is represented by its Euclidean component. A nonzero principal
element of the adelic skew–plane is unimodular. The adelic diline is a locally compact
ring whose elements are the elements of the adelic skew–diplane which are left fixed by
the complex conjugation of the adelic skew–diplane. The conjugation of the adelic diline
is the automorphism ξ into ξ∗ of order two which is the restriction of the real conjugation
of the adelic skew–diplane. The adelic line is a locally compact ring whose elements are
the elements of the adelic skew–plane which are left fixed by the conjugation of the adelic
skew–plane. The adelic line is the set of elements are the elements of the adelic diline which
are left fixed by the conjugation of the adelic diline. A principal element of the adelic line
is an element of the adelic line which is a principal element of the adelic skew–plane.

The Euclidean line is a locally compact field whose elements are the self–conjugate
elements of the Euclidean skew–plane. An Euclidean plane is a locally compact field
whose elements are the elements of the Euclidean skew–plane which commute with a given
element of the Euclidean skew–plane which is not self–conjugate. The associated Euclidean
diplane is identical with the Euclidean plane. An example of an Euclidean plane is the
set of elements of the Euclidean skew–plane which commute with i. The elements of the
Euclidean plane are of the form x+iy with x and y elements of the Euclidean line. Another
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example of an Euclidean plane is associated with a prime p when it is represented

p = ω−ω

with ω an integral element of the Euclidean skew–plane and when γ is an integral solution
of the equation

ωγ = γ−ω

in the Euclidean skew–plane whose residue class modulo p is invertible but not self–
conjugate. A p–adic diplane is defined as the set of elements of the p–adic skew–diplane
which commute with γ. A related Euclidean plane is the set of elements of the Euclidean
skew–diplane which commute with γ.

The adelic diplane is a locally compact ring whose elements are the elements of the adelic
skew–diplane whose Euclidean component belongs to the Euclidean diplane and whose adic
component belongs to the adic diplane. The real conjugation of the adelic diplane is the
automorphism ξ into ξ∗ of order two which is the restriction of the real conjugation of the
adelic skew–diplane. The complex conjugation of the adelic diplane is the automorphism ξ
into ξ− of order two which is the restriction of the complex conjugation of the adelic skew–
diplane. The real conjugation of the adelic diplane commutes with the complex conjugation
of the adelic diplane. The adelic plane is a locally compact ring whose element are the
elements of the adelic diplane which are left fixed by the real conjugation of the adelic
diplane. The conjugation of the adelic plane is the automorphism ξ into ξ− of order two
which is the restriction of the complex conjugation of the adelic diplane. The adelic diline
is the locally compact ring whose elements are the elements of the adelic diplane which are
left fixed by the complex conjugation of the adelic diplane. The conjugation of the adelic
diline is the restriction of the real conjugation of the adelic diplane. The conjugation of
the adelic diline is the automorphism ξ into ξ∗ of order two which is the restriction of the
real conjugation of the adelic diplane. The adelic line is the set of elements of the adelic
plane which are left fixed by the conjugation of the adelic plane. The adelic line is also
the set of elements of the adelic diline which are left fixed by the conjugation of the adelic
diline.

The r–adelic skew–diplane is a locally compact ring which is canonically isomorphic to
the Cartesian product of the Euclidean skew–diplane and the r–adic skew–diplane. An
element ξ of the r–adelic skew–diplane has a Euclidean component ξ+ in the Euclidean
skew–diplane and an r–adic component ξ− in the r–adic skew–diplane. The real conjuga-
tion of the r–adelic skew–diplane is the automorphism ξ into ξ∗ of order two such that the
Euclidean component of ξ∗ is obtained from the Euclidean component of ξ under the real
conjugation of the Euclidean skew–diplane and the r–adic component of ξ∗ is obtained
from the r–adic component of ξ under the real conjugation of the r–adic skew–diplane.
The complex conjugation of the r–adelic skew–diplane is the anti–automorphism ξ into
ξ− of order two such that the Euclidean component of ξ− is obtained from the Euclidean
component of ξ under the complex conjugation of the Euclidean skew–diplane and the
r–adic component of ξ− is obtained from the r–adic component of ξ under the complex
conjugation of the r–adic skew–diplane. The real conjugation of the r–adelic skew–diplane
commutes with the complex conjugation of the r–adelic skew–diplane. The Euclidean
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modulus of an element ξ of the r–adelic skew–diplane is the Euclidean modulus |ξ|+ of
its Euclidean component ξ+. The r–adic modulus of an element ξ of the r–adelic skew–
diplane is the r–adic modulus |ξ|− of its r–adic component ξ−. The r–adelic modulus of
an element ξ of the r–adelic skew–diplane is the product |ξ| of its Euclidean modulus |ξ|+
and its adic modulus |ξ|−. An element of the r–adelic skew–diplane is said to be a unit
if its Euclidean modulus and its r –adic modulus are one. An element of the r–adelic
skew–diplane is said to be unimodular if its r–adelic modulus is one.

The r–adelic skew–plane is a locally compact ring whose elements are the elements of
the r–adelic skew–diplane which are left fixed by the real conjugation of the r–adelic skew–
diplane. The conjugation of the r–adelic skew–plane is the anti–automorphism ξ into ξ− of
order two which is the restriction of the complex conjugation of the r–adelic skew–diplane.
The r–adelic diline is a locally compact ring whose elements are the elements of the r–adelic
skew–diplane which are left fixed by the complex conjugation of the r–adelic skew–diplane.
The conjugation of the r–adelic diline is the automorphism ξ into ξ∗ of order two which is
the restriction of the real conjugation of the r–adelic skew–diplane. The r–adelic line is a
locally compact ring whose elements are the elements of the r–adelic diline which are left
fixed by the conjugation of the r–adelic diline. A principal element of the r–adelic skew–
plane is an element whose Euclidean component has an integral product with a nonzero
integral element η of the Euclidean skew–plane, such that the prime divisors of η−η are
divisors of r, and whose r–adic component is represented by its Euclidean component. A
nonzero principal element of the r–adelic skew–plane is unimodular.

The r–adelic diplane is a locally compact ring whose elements are the elements of the
r–adelic skew–diplane whose Euclidean component belongs to the Euclidean diplane and
whose adic component belongs to the adic diplane. The real conjugation of the r–adelic
diplane is the automorphism ξ into ξ∗ of order two which is the restriction of the real conju-
gation of the r–adelic skew–diplane. The complex conjugation of the r–adelic diplane is the
automorphism ξ into ξ− of order two which is the restriction of the complex conjugation
of the r–adelic skew–diplane. The r–adelic plane is a locally compact ring whose elements
are the elements of the r–adelic diplane which are left fixed by the real conjugation of the
r–adelic diplane. The conjugation of the r–adelic plane is the automorphism ξ into ξ−

of order two which is the restriction of the complex conjugation of the r–adelic diplane.
The r–adelic diline is the set of elements of the r–adelic diplane which are left fixed by
the complex conjugations of the r–adelic diplane. The conjugation of the r–adelic diline is
the restriction of the real conjugation of the r–adelic diplane. The r–adelic line is the set
of automorphism ξ into ξ∗ of order two which is the elements of the r–adelic plane which
are left fixed by the conjugation of the r–adelic plane. The r–adelic line is also the set
of elements of the r–adelic diline which are left fixed by the conjugation of the r–adelic
diline.

The fundamental domain for the Euclidean skew–plane is the set of elements ξ of the
Euclidean skew–plane such that 1

2ξ + 1
2ξ
− is a unit. The canonical measure for the fun-

damental domain is a nonnegative measure on the Borel subsets of the domain which is
characterized within a constant by invariance properties. Measure preserving transforma-
tions are defined by taking ξ into ωξ and ξ into ξω for every unit ω of the Euclidean
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skew–plane. The transformation which takes ξ into

1
2 (ξ + ξ−) + 1

2ω
−(ξ − ξ−)ω

multiplies the canonical measure by the fourth power of the Euclidean modulus of ω−ω
for every element ω of the Euclidean skew–plane. The measure is normalized so that the
set of elements of the canonical domain whose skew–conjugate component has Euclidean
modulus less than one has measure π. A Hilbert space is constructed from the space of
functions f(ξ) of ξ in the Euclidean skew–plane which satisfy the identity

f( 1
2ω(ξ + ξ−) + 1

2ω
−1(ξ − ξ−)) = |ω|f(ξ)

for every nonzero element ω of the Euclidean line and which are square integrable with
respect to the canonical measure for the fundamental domain. An isometric transformation
of the space into itself is defined by taking a function f(ξ) of ξ in the Euclidean skew–
plane into the function f(ω−ξω) of ξ in the Euclidean skew–plane for every unit ω of the
Euclidean skew–plane. The space decomposes into invariant subspaces under the action of
the group.

An auxiliary Hilbert space is constructed for every nonnegative integer ν. The elements
of the space are homogeneous functions of degree ν in the variables x, y, z with

ξ = ix+ jy + kz.

An element of the space is a linear combination of monomials

xaybzc

with a, b, c nonnegative integers such that

ν = a+ b+ c.

A scalar product is introduced in the space for which the monomials form an orthogonal
set. The scalar self–product of the monomial with exponents a, b, c is

a! b! c!

(1 + 2ν)ν!

An isometric transformation of the space into itself is defined by taking a function f(ξ)
of skew–conjugate elements ξ of the Euclidean skew–plane into the function f(ω−ξω) of
skew–conjugate elements ξ of the Euclidean skew–plane for every unit ω of the Euclidean
skew–plane. The Laplacian acts as a linear transformation of the space of homogeneous
polynomials of degree ν onto the space of homogeneous polynomials of degree ν − 2.
Every element of the space of homogeneous polynomials of degree ν is annihilated when
ν is less than two. The transformation commutes with the transformation which takes a
function f(ξ) of skew–conjugate elements ξ of the Euclidean skew–diplane into the function
f(ω−ξω) of skew–conjugate element ξ of the Euclidean skew–diplane for every unit ω of
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the Euclidean skew–plane. The space of homogeneous harmonic polynomials of degree ν is
the kernel of the Laplacian as it acts on homogeneous polynomials of degree ν. The space
of homogeneous harmonic polynomials of degree ν is an invariant subspace of dimension
1 + 2ν over the Euclidean line for the transformations f(ξ) into f(ω−ξω).

A construction of homogeneous harmonic polynomials of degree ν is made with respect
to an Euclidean plane. The construction is now made for the Euclidean plane whose
elements commute with i. Solutions are given in terms of the hypergeometric series

F (a, b; c; z) = 1 +
ab

1c
z +

a(a+ 1)b(b+ 1)

1 · 2c(c+ 1)
z2 + . . . .

A harmonic polynomial is a function of

ix+ jy + kz

which is a solution of the Laplace equation in the variables x, y, z. When the variables

ξ = x+ iy

and
η = x− iy

are used in place of the variables x and y, a harmonic polynomial of degree ν is a function
of ξ, η, and z which satisfies the equation

4
∂2φ

∂ξ∂η
+
∂2φ

∂z2
= 0.

Basic solutions are

φ(ξ, η, z) = zν−kξkF ( 1
2k −

1
2 −

1
2ν,

1
2k − 1− 1

2ν; k + 1;−ξη/z2)

and
φ(ξ, η, z) = zν−kηkF ( 1

2k −
1
2 −

1
2ν,

1
2k − 1− 1

2ν; k + 1;−ξη/z2)

with k = 0, . . . , ν. The solutions coincide when k is equal to zero.

If ρ is a positive integer, a character χ modulo ρ is a function χ(n) of integers n, which
is periodic of period ρ, which satisfies the identity

χ(mn) = χ(m)χ(n)

for all integers m and n, which has absolute value one at integers which are relatively
prime to ρ, and which has value zero otherwise. A character χ modulo ρ is said to be
primitive modulo ρ if no character modulo a proper divisor of ρ exists which agrees with χ
at integers which are relatively prime to ρ. If a character χ modulo ρ is primitive modulo
ρ, a number ε(χ) of absolute value one exists such that the identity

ρ
1
2 ε(χ)χ(n)− =

∑
χ(k) exp(2πink/ρ)
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holds for every integer n with summation over the residue classes of integers k modulo ρ.
The principal character modulo ρ is the character modulo ρ whose only nonzero value is
one. The principal character modulo ρ is primitive modulo ρ when, and only when, ρ is
equal to one.

The residue classes of integers modulo ρ are identified with the residue classes of integral
elements of the p–adic line modulo ρ. A character χ modulo ρ is treated as a function of
integral elements of the ρ–adic line which has equal values at elements whose difference is
divisible by ρ. The character acts as a homomorphism of the group of units of the ρ–adic
line into the complex numbers of absolute value one. The character vanishes at integral
elements of the p–adic line which are not units. The character is extended to the ρ–adic
line so as to vanish at elements which are not units.

A character χ modulo ρ admits an extension to the ρ–adic diplane which acts as a
homomorphism of the group of units of the ρ–adic diplane into the complex numbers of
absolute value one and which vanishes at elements of the ρ–adic diplane which are not
units. The choice of extension is inessential in the present applications. The extended
character is also denoted χ. The conjugate character χ∗ is defined by the identity

χ∗(ξ) = χ(ξ−)−

for every element ξ of the p–adic diplane. If r is a positive integer, which is divisible by
ρ, such that r/ρ is relatively prime to ρ and is not divisible by the square of a prime, the
character is extended to the r–adic diplane so as to have equal values at elements of the
r–adic diplane which have equal p–adic component for every prime divisor p of ρ. The
character is extended to the adic diplane so as to have equal values at elements of the adic
diplane which have equal p–adic component for every prime divisor p of ρ.

Analogues of characters for the adic skew–diplane are constructed from homogeneous
harmonic polynomials of degree ν which satisfy a symmetry condition. The polynomials
are treated as functions of skew–conjugate elements

ξ = ix+ jy + kz

of the Euclidean skew–plane. The symmetry condition for a function f(ξ) of ξ states that
the identity

f(ξ) = f(ω−ξω)

holds for every integral unit ω of the Euclidean skew–plane. Homogeneous polynomials
of degree ν which satisfy the symmetry condition are linear combinations of elementary
symmetric functions which are defined as sums∑

sgnν(a, b, c)xaybzc

over the nonnegative integers a, b, c of the same parity as ν with sum ν. The signature
sgn(a, b, c) is one for an even permutation, minus one for an odd permutation of the
exponents initially written is descending order.
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The dimension of the space of homogeneous polynomials of degree ν which satisfy the
symmetry condition is

(ν − 1)(ν − 5)

48

when ν is congruent to one or five modulo twelve,

(ν + 2)(ν + 10)

48

when ν is congruent to two or ten modulo twelve,

(ν + 4)(ν + 8)

48

when ν is congruent to four or eight modulo twelve,

(ν + 1)(ν − 7)

48

when ν is congruent to seven or eleven modulo twelve,

1

3
+

(ν + 1)(ν − 7)

48

when ν is congruent to three modulo twelve,

1

3
+

(ν + 2)(ν + 10)

48

when ν is congruent to six modulo twelve,

1

3
+

(ν − 1)(ν − 5)

48

when ν is congruent to nine modulo twelve, and

1

3
+

(ν + 4)(ν + 8)

48

when ν is divisible by twelve.

The dimension of the space of homogeneous harmonic polynomials of degree ν which
satisfy the symmetry condition is

ν − 1

12

when ν is congruent to one modulo twelve,

ν − 2

12



RIEMANN ZETA FUNCTIONS 21

when ν is congruent to two modulo twelve,

ν − 3

12

when ν is congruent to three modulo twelve,

ν + 8

12

when ν is congruent to four modulo twelve,

ν − 5

12

when ν is congruent to five modulo twelve,

ν + 6

12

when ν is congruent to six modulo twelve,

ν − 7

12

when ν is congruent to seven modulo twelve

ν + 4

12

when ν is congruent to eight modulo twelve,

ν + 3

12

when ν is congruent to nine modulo twelve,

ν + 2

12

when ν is congruent to ten modulo twelve,

ν − 11

12

when ν is congruent to eleven modulo twelve, and

ν + 12

12

when ν is divisible by twelve.
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A self–adjoint transformation ∆(n) is defined for every positive integer n in the space
of homogeneous harmonic polynomials of degree ν which satisfy the symmetry condition.
The transformation takes a function f(ξ) of skew–conjugate elements ξ of the Euclidean
skew–plane into a function g(ξ) of skew–conjugate elements ξ of the Euclidean skew–plane
when the identity

24nνg(ξ) =
∑

f(ω−ξω)

holds with summation over the representations

n = ω−ω

with ω an integral element of the Euclidean skew–plane. The identity

∆(m)∆(n) =
∑

∆(mn/k2)

holds for all positive integers m and n with summation over the common odd divisors
k of m and n. The Hilbert space of homogeneous harmonic polynomials of degree ν
which satisfy the symmetry admits an orthonormal basis consisting of eigenfunctions of
the transformation. A basic element is an eigenfunction of ∆(n) for a real eigenvalue τ(n)
for every positive integer n. The identity

τ(m)τ(n) =
∑

τ(mn/k2)

holds for all positive integers m and n with summation over the common odd divisors k of
m and n.

§2. The Radon transformation for the Euclidean skew–plane

The Hankel transformation of order ν for an Euclidean plane is identical with the Hankel
transformation of order ν for the associated Euclidean diplane. The transformation is
defined when ν is a nonnegative integer for the Euclidean diplane whose elements commute
with i. The character of order ν for the Euclidean plane is the homomorphism χ of the
multiplicative group of invertible elements of the Euclidean plane into the nonzero complex
numbers which takes x+ iy into

(x+ iy)ν .

The canonical measure for the Euclidean plane is Lebesgue measure. If a function f(ξ) of
ξ in the Euclidean plane is square integrable with respect to the canonical measure for the
Euclidean plane and satisfies the identity

f(ωξ) = χ(ω)f(ξ)

for every unit ω of the Euclidean plane, then its Hankel transform of order ν for the
Euclidean plane is a function g(ξ) of ξ in the Euclidean plane which is square integrable
with respect to the canonical measure for the Euclidean plane and which satisfies the
identity

g(ωξ) = χ(ω)g(ξ)
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for every unit ω of the Euclidean plane. A positive parameter ρ is included in the definition
of the transformation for application to zeta functions. The transformation takes a function
f(ξ) of ξ in the Euclidean plane into a function g(ξ) of ξ in the Euclidean plane if the
identity∫

χ(ξ)−g(ξ) exp(πizξ−ξ/ρ)dξ = (i/z)1+ν

∫
χ(ξ)−f(ξ) exp(−πiz−1ξ−ξ/ρ)dξ

holds when z is in the upper half–plane with integration with respect to the canonical
measure for the Euclidean plane. The identity∫

|f(ξ)|2dξ =

∫
|g(ξ)|2dξ

holds with integration with respect to the canonical measure for the Euclidean plane.
The function f(ξ) of ξ in the Euclidean plane is the Hankel transform of order ν for the
Euclidean plane of the function g(ξ) of ξ in the Euclidean plane.

A Hankel transformation of order ν for the Euclidean skew–plane is identical with a
Hankel transformation of order ν for the Euclidean skew–diplane. The analogue of a
character is a function φ(ξ) of ξ in the Euclidean skew–diplane which satisfies the identity

φ( 1
2
ω(ξ + ξ−) + 1

2
ω−1(ξ − ξ−)) = φ(ξ)

for every invertible element ω of the Euclidean line and whose restriction to elements

ξ = t+ ix+ jy + kz

of the Euclidean skew–plane with t equal to the unit of the Euclidean line is an element
of the orthonormal basis for the Hilbert space of homogeneous harmonic polynomials of
degree ν in x, y, z. The conjugate harmonic function φ∗ is defined by the identity

φ∗(ξ) = φ(ξ−)−.

The Laplace kernel for the Euclidean skew–diplane is obtained from a computation of the
integral ∫ ∞

0

exp(πizt2| 1
2
ξ + 1

2
ξ−|2) exp(πizt−2| 1

2
ξ − 1

2
ξ−|2)dt

= (−8iz)−
1
2 | 12ξ −

1
2ξ
−|−1 exp(2πiz| 12ξ + 1

2ξ
−|| 12ξ −

1
2ξ
−|)dt

when z is in the upper half–plane. The square root of −8iz is taken in the right half–plane.
The domain of the Hankel transformation of order ν and harmonic φ for the Euclidean
skew–plane is the space of functions f(ξ) of ξ in the Euclidean skew–plane which satisfy
the identity

f( 1
2
ω(ξ + ξ−) + 1

2
ω−1(ξ − ξ−)) = |ω|f(ξ)

for every invertible element ω of the Euclidean diline, which satisfy the identity

φ(ξ)f(ω−ξω) = φ(ω−ξω)f(ξ)
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for every unit ω of the Euclidean skew–plane, and which are square integrable with respect
to the canonical measure for the fundamental domain of the Euclidean skew–plane. The
range of the Hankel transformation of order ν and harmonic φ for the Euclidean skew–plane
is the domain of the Hankel transformation of order ν and harmonic φ∗ for the Euclidean
skew–plane. The transformation takes a function f(ξ) of ξ in the Euclidean skew–plane
into a function g(ξ) of ξ in the Euclidean skew–plane when the identity∫

φ∗(ξ)−g(ξ)| 1
2
ξ − 1

2
ξ−|−1 exp(2πiz| 1

2
ξ + 1

2
ξ−|| 1

2
ξ − 1

2
ξ−|)dξ

= (i/z)2+2ν

∫
φ(ξ)−f(ξ)| 12ξ −

1
2ξ
−|−1 exp(−2πiz−1| 12ξ + 1

2ξ
−|| 12ξ −

1
2ξ
−|)dξ

holds for z in the upper half–plane with integration with respect to the canonical measure
for the fundamental domain of the Euclidean skew–diplane. The identity∫

|f(ξ)|2dξ =

∫
|g(ξ)|2dξ

holds with integration with respect to the canonical measure for the fundamental domain.
The function f(ξ) of ξ in the Euclidean skew–diplane is the Hankel transform of order ν
and harmonic φ∗ for the Euclidean skew–diplane of the function g(ξ) of ξ in the Euclidean
skew–diplane.

The Laplace transformation of order ν for the Euclidean plane is identical with the
Laplace transformation of order ν for the Euclidean diplane. The Laplace transformation
of order ν for the Euclidean plane permits a computation of the Hankel transformation of
order ν for the Euclidean plane. The domain of the transformation is the space of functions
f(ξ) of ξ in the Euclidean plane which are square integrable with respect to the canonical
measure for the Euclidean plane and which satisfy the identity

f(ωξ) = χ(ω)f(ξ)

for every unit ω of the Euclidean diplane. The Laplace transform of order ν for the
Euclidean plane of the function f(ξ) of ξ in the Euclidean plane is the function g(z) of z
in the upper half–plane defined by the integral

2πg(z) =

∫
χ(ξ)−f(ξ) exp(πizξ−ξ/ρ)dξ

with respect to the canonical measure for the Euclidean plane. The integral can be written

2πg(x+ iy) = π

∫ ∞
0

χ(ξ)−f(ξ) exp(−πty/ρ) exp(πitx/ρ)dt

as a Fourier integral for the Euclidean line under the constraint

t = ξ−ξ.
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The identity

(2/ρ)

∫ +∞

−∞
|g(x+ iy)|2dx =

∫ ∞
0

|f(ξ)|2tν exp(−2πty/ρ)dt

holds by the isometric property of the Fourier transformation for the Euclidean line. When
ν is zero, the identity

(2π/ρ) sup

∫ +∞

−∞
|g(x+ iy)|2dx =

∫
|f(ξ)|2dξ

holds with the least upper bound taken over all positive numbers y. The identity

(2π/ρ)1+ν

∫ ∞
0

∫ +∞

−∞
|g(x+ iy)|2yν−1dxdy = Γ(ν)

∫
|f(ξ)|2dξ

holds when ν is positive. Integration on the right is with respect to the canonical measure
for the Euclidean plane. An analytic function g(z) of z in the upper half–plane is a Laplace
transform of order ν for the Euclidean plane if a finite least upper bound

sup

∫ +∞

−∞
|g(x+ iy)|2dx

is obtained over all positive numbers y when ν is zero and if the integral∫ ∞
0

∫ +∞

−∞
|g(x+ iy)|2yν−1dxdy

is finite when ν is positive. The space of Laplace transforms of order ν for the Euclidean
plane is a Hilbert space of functions analytic in the upper half–plane when considered with
the scalar product for which the Laplace transformation of order ν for the Euclidean plane
is isometric. The Hankel transformation of order ν for the Euclidean plane is unitarily
equivalent under the Laplace transformation of order ν for the Euclidean plane to the
isometric transformation in the space of analytic functions which takes g(z) into

(i/z)1+νg(−1/z).

The Laplace transformation of order ν and harmonic φ for the Euclidean skew–plane
permits a computation of the Hankel transformation of order ν and harmonic φ for the
Euclidean skew–plane. The domain of the transformation is the space of functions f(ξ) of
ξ in the Euclidean skew–plane which satisfy the identity

f( 1
2
ω(ξ + ξ−) + 1

2
ω−1(ξ − ξ−)) = |ω|f(ξ)

for every invertible element ω of the Euclidean line, which satisfy the identity

φ(ξ)f(ω−ξω) = φ(ω−ξω)f(ξ)
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for every unit ω of the Euclidean skew–plane, and which are square integrable with respect
to the canonical measure for the Euclidean skew–plane. The Laplace transform of order ν
and harmonic φ for the Euclidean skew–diplane of the function f(ξ) of ξ in the Euclidean
skew–plane is the analytic function g(z) of z in the upper half–plane defined by the integral

4πg(z) =

∫
φ(ξ)−f(ξ)| 12ξ −

1
2ξ
−|−1 exp(2πiz| 12ξ + 1

2ξ
−|| 12ξ −

1
2ξ
−|)dξ

with respect to the canonical measure for the fundamental domain. The identity

(4π)2+2ν

∫ ∞
0

∫ +∞

−∞
|g(x+ iy)|2y2νdxdy = Γ(1 + 2ν)

∫
|f(ξ)|2dξ

is satisfied. Integration on the right with respect to the canonical measure for the fun-
damental domain. An analytic function g(z) of z in the upper half–plane is a Laplace
transform of order ν and harmonic φ for the Euclidean skew–plane if the integral∫ ∞

0

∫ +∞

−∞
|g(x+ iy)|2y2νdxdy

is finite. The space of Laplace transforms of order ν and harmonic φ for the Euclidean
skew–plane is a Hilbert space of functions analytic in the upper half–plane when considered
with the scalar product for which the Laplace transformation of order ν and harmonic φ for
the Euclidean skew–plane is isometric. An isometric transformation in the Hilbert space
of analytic functions is defined by taking g(z) into

(i/z)2+2νg(−1/z).

A relation T with domain and range in a Hilbert space is said to be maximal dissipative
if the relation T +w has an everywhere defined inverse for some complex number w in the
right half–plane and if the relation

(T − w)(T + w)−1

is a contractive transformation. The condition holds for every element w of the right
half–plane if it holds for some element w of the right half–plane.

The Radon transformation of order ν for the Euclidean plane is identical with the Radon
transformation of order ν for the Euclidean diplane. The transformations are defined when
ν is equal to zero or one. The Radon transformation of order ν for the Euclidean plane is
a maximal dissipative transformation in the space of functions f(ξ) of ξ in the Euclidean
plane which are square integrable with respect to the canonical measure for the Euclidean
plane and which satisfy the identity

f(ωξ) = χ(ω)f(ξ)
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for every unit ω of the Euclidean plane. The transformation takes a function f(ξ) of ξ in
the Euclidean plane into a function g(ξ) of ξ in the Euclidean plane when the identity

g(ξ) =

∫
f(ξ + η)dη

holds formally with integration with respect to Haar measure for the space of elements η
of the Euclidean plane such that

η−ξ + ξ−η = 0.

Haar measure if normalized so that the set of elements of Euclidean modulus less than one
has measure two. The integral is accepted as the definition when

f(ξ) = χ(ξ) exp(πizξ−ξ/ρ)

with z in the upper half–plane. The identity

g(ξ) = (iρ/z)
1
2 f(ξ)

then holds with the square root of iρ/z taken in the right half–plane. The adjoint of the
Radon transformation of order ν for the Euclidean plane takes a function f(ξ) of ξ in the
Euclidean plane into a function g(ξ) of ξ in the Euclidean plane when the identity∫

χ(ξ)−g(ξ) exp(πizξ−ξ/ρ)dξ = (iρ/z)
1
2

∫
χ(ξ)−f(ξ) exp(πizξ−ξ/ρ)dξ

holds when z is in the upper half–plane with integration with respect to the canonical
measure for the Euclidean plane. The square root of iρ/z is taken in the right half–plane.

The Radon transformation of order ν and harmonic φ for the Euclidean skew–plane
is identical with the Radon transformation of order ν and harmonic φ for the Euclidean
skew–diplane. The Radon transformation of order ν and harmonic φ for the Euclidean
skew–plane is a maximal dissipative transformation in the space of functions f(ξ) of ξ in
the Euclidean skew–plane which satisfy the identity

f( 1
2ω(ξ − ξ−) + 1

2ω
−1(ξ − ξ−)) = |ω|f(ξ)

for every invertible element ω of the Euclidean diline, which satisfy the identity

φ(ξ)f(ω−ξω) = φ(ω−ξω)f(ξ)

for every unit ω of the Euclidean skew–diplane, and which are square integrable with
respect to the canonical measure for the Euclidean skew–plane. The transformation takes
the function

f(ξ) = φ(ξ)|ξ − ξ−)−1 exp(2πiz| 12ξ + 1
2ξ
−|| 12ξ −

1
2ξ
−|)
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of ξ in the Euclidean skew–plane into the function

g(ξ) = (i/z)f(ξ)

of ξ in the Euclidean skew–plane when z is in the upper half–plane. The adjoint of the
Radon transformation of order ν and harmonic φ for the Euclidean skew–plane takes a
function f(ξ) of ξ in the Euclidean skew–plane into a function g(ξ) of ξ in the Euclidean
skew–plane when the identity∫

φ(ξ)−g(ξ)| 1
2
ξ − 1

2
ξ−|−1 exp(2πiz| 1

2
ξ + 1

2
ξ−|| 1

2
ξ − 1

2
ξ−|)dξ

= (i/z)

∫
φ(ξ)−f(ξ)| 12ξ −

1
2ξ
−|−1 exp(2πiz| 12ξ + 1

2ξ
−|| 12ξ −

1
2ξ
−|)dξ

holds when z is in the upper half–plane. Integration is with respect to the canonical
measure for the fundamental domain of the Euclidean skew–plane.

The Mellin transformation of order ν for the Euclidean plane is identical with the Mellin
transformation of order ν for the Euclidean plane. The domain of the Mellin transformation
of order ν for the Euclidean diplane is the space of functions f(ξ) of ξ in the Euclidean
plane which are square integrable with respect to the canonical measure for the Euclidean
plane, which satisfy the identity

f(ωξ) = χ(ω)f(ξ)

for every unit ω of the Euclidean plane, and which vanish in a neighborhood of the origin.
The Laplace transform of order ν for the Euclidean plane of the function f(ξ) of ξ in the
Euclidean plane is the analytic function g(z) of z in the upper half–plane defined by the
integral

2πg(z) =

∫
χ(ξ)−f(ξ) exp(πizξ−ξ/ρ)dξ

with respect to the canonical measure for the Euclidean plane. The Mellin transform of
order ν for the Euclidean plane of the function f(ξ) of ξ in the Euclidean plane is an
analytic function

F (z) =

∫ ∞
0

g(it)t
1
2 ν− 1

2− 1
2 izdt

of z in the upper half–plane. Since the function

W (z) = (π/ρ)−
1
2 ν−

1
2 + 1

2 izΓ( 1
2ν + 1

2 −
1
2 iz)

admits an integral representation

W (z) = (ξ−ξ)
1
2 ν+ 1

2−
1
2 iz

∫ ∞
0

exp(−πtξ−ξ/ρ)t
1
2 ν−

1
2−

1
2 izdt
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when z is in the upper half–plane, the identity

2πF (z)/W (z) =

∫ ∞
0

χ(ξ)−f(ξ)|ξ|iz−ν−1dξ

holds when z is in the upper half–plane with integration with respect to the canonical
measure for the Euclidean plane. If f(ξ) vanishes when |ξ| < a, the identity

sup

∫ +∞

−∞
a2y|F (x+ iy)/W (x+ iy)|2dx =

∫
|f(ξ)|2dξ

holds with the upper bound taken over all positive numbers y. Integration on the right is
with respect to the canonical measure for the Euclidean diplane.

The Mellin transformation of order ν and harmonic φ for the Euclidean skew–plane
is identical with the Mellin transformation of order ν and harmonic φ for the Euclidean
skew–diplane. The domain of the Mellin transformation of order ν and harmonic φ for
the Euclidean skew–plane is the space of functions f(ξ) of ξ in the Euclidean skew–plane
which satisfy the identity

f( 1
2ω(ξ + ξ−) + 1

2ω
−1(ξ − ξ−)) = |ω|f(ξ)

for every invertible element ω of the Euclidean line, which satisfy the identity

φ(ξ)f(ω−ξω) = φ(ω−ξω)f(ξ)

for every unit ω of the Euclidean skew–plane, which are square integrable with respect to
the canonical measure for the fundamental domain of the Euclidean skew–plane, and which
vanish in a neighborhood of the origin. The Laplace transform of order ν and harmonic
φ for the Euclidean skew–plane is the analytic function g(z) of z in the upper half–plane
which is defined by the integral

4πg(z) =

∫
φ(ξ)−f(ξ)| 1

2
ξ − 1

2
ξ−|−1 exp(2πiz| 1

2
ξ + 1

2
ξ−|| 1

2
ξ − 1

2
ξ−|)dξ

with respect to the canonical measure for the fundamental domain. The Mellin transform
of order ν and harmonic φ for the Euclidean skew–plane of the function f(ξ) of ξ in the
Euclidean skew–plane is the analytic function

F (z) =

∫ ∞
0

g(it)tν−izdt

of z in the upper half–plane. Since the function

W (z) = (2π)−ν−1+izΓ(ν + 1− iz)
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admits the integral representation

W (z) = | 12ξ + 1
2ξ
−|ν+1−iz| 12ξ −

1
2ξ
−|ν+1−iz

×
∫ ∞

0

exp(−2πt| 1
2
ξ + 1

2
ξ−|| 1

2
ξ − 1

2
ξ−|)tν−izdt

when z is in the upper half–plane, the identity

4πF (z)/W (z) =

∫
φ(ξ)−f(ξ)| 12ξ −

1
2ξ
−|iz−ν−1| 12ξ −

1
2ξ
−|iz−ν−2dξ

holds when z is in the upper half–plane with integration with respect to the canonical
measure for the fundamental domain. If f(ξ) vanishes when

| 12ξ + 1
2ξ
−|| 12ξ −

1
2ξ
−| < a,

the identity

sup

∫ +∞

−∞
a2y|F (x+ iy)/W (x+ iy)|2dx = 1

2

∫
|f(ξ)|2dξ

holds with the least upper bound taken over all positive numbers y. Integration on the
right is with respect to the canonical measure for the fundamental domain.

§3. The Riemann hypothesis for Hilbert spaces of entire functions

A characterization of Mellin transforms is made in weighted Hardy spaces. An analytic
weight function is a function which is analytic and without zeros in the upper half–plane.
The weighted Hardy space F(W ) associated with an analytic weight function W (z) is the
Hilbert space F(W ) whose elements are the analytic functions F (z) of z in the upper
half–plane such that a finite least upper bound

‖F‖2F(W ) = sup

∫ +∞

−∞
|F (x+ iy)/W (x+ iy)|2dx

is obtained over all positive numbers y. Since F (z)/W (z) is of bounded type as a function
of z in the upper half–plane, a boundary value function F (x)/W (x) is defined almost
everywhere with respect to Lebesgue measure on the real axis. The identity

‖F‖2F(W ) =

∫ +∞

−∞
|F (x)/W (x)|2dx

is satisfied. A continuous linear functional on the space is defined by taking F (z) into
F (w) when w is in the upper half–plane. The reproducing kernel function for function
values at w is

W (z)W (w)−

2πi(w− − z) .
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The classical Hardy space for the upper half–plane is the weighted Hardy space F(W )
when W (z) is identically one. Multiplication by W (z) is an isometric transformation of
the classical Hardy space onto the weighted Hardy space F(W ) whenever W (z) is an
analytic weight function for the upper half–plane.

The analytic weight function

W (z) = (π/ρ)−
1
2 ν− 1

2 + 1
2 izΓ( 1

2
ν + 1

2
− 1

2
iz)

appears in the characterization of Mellin transforms of order ν for the Euclidean plane.
A maximal dissipative transformation in the weighted Hardy space F(W ) is defined by
taking F (z) into F (z + i) whenever F (z) and F (z + i) belong to the space.

The analytic weight function

W (z) = (2π)−ν−1+izΓ(ν + 1− iz)

appears in the characterization of Mellin transforms of order ν for the Euclidean skew–
plane. A maximal dissipative transformation in the weighted Hardy space F(W ) is defined
by taking F (z) into F (z + i) whenever F (z) and F (z + i) belong to the space.

Weighted Hardy spaces F(W ) appear in which a maximal dissipative transformation
is defined for some positive number h by taking F (z) into F (z + ih) whenever F (z) and
F (z+ ih) belong to the space. The existence of the maximal dissipative transformation is
equivalent to properties of the weight function [9]. Since the adjoint transformation takes
the reproducing kernel function

W (z)W (w − 1
2
ih)−

2πi(w− + 1
2 ih− z)

for function values at w − 1
2 ih into the reproducing kernel function

W (z)W (w + 1
2
ih)−

2πi(w− − 1
2 ih− z)

for function values at w + 1
2
ih whenever w − 1

2
ih is in the upper half–plane, the function

W (z − 1
2 ih)W (w + 1

2 ih)− +W (z + 1
2 ih)W (w − 1

2 ih)−

2πi(w− − z)

of z in the upper half–plane is the reproducing kernel function for function values at w
for a Hilbert space whose elements are functions analytic in the half–plane. The function
W (z − 1

2
ih) has an analytic extension to the upper half–plane such that

W (z − 1
2 ih)/W (z + 1

2 ih)

has nonnegative real part in the half–plane. This property of the weight function char-
acterizes the weighted Hardy spaces which admit the maximal dissipative transformation.
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If for a weight function W (z) the function W (z − 1
2
ih) has an analytic extension to the

upper half–plane such that
W (z − 1

2 ih)/W (z + 1
2 ih)

has nonnegative real part in the half–plane, then a maximal dissipative transformation in
the space F(W ) is defined by taking F (z) into F (z + ih) whenever F (z) and F (z + ih)
belong to the space.

The existence of a maximal dissipative transformation for some positive number h im-
plies the existence of a maximal dissipative transformation for a smaller positive number h
when an additional hypothesis is satisfied. Assume that the modulus of the weight function
W (z) is a nondecreasing function of distance from the real axis on every vertical half–line
in the upper half–plane. An equivalent condition is that the real part of

iW ′(z)/W (z)

is nonnegative in the upper half–plane. A Hilbert space, whose elements are functions
analytic in the upper half–plane, exists which contains the function

W (z)W ′(w)− −W ′(z)W (w)−

π(z − w−)

of z as reproducing kernel function for function values at w when w is in the upper half–
plane. If a maximal dissipative transformation in the space F(W ) is defined for some
positive number h by taking F (z) into F (z+ih) whenever F (z) and F (z+ih) belong to the
space and if a positive number k is less than h, then a maximal dissipative transformation
in the space F(W ) is defined by taking F (z) into F (z + ik) whenever F (z) and F (z + ik)
belong to the space.

The analytic weight functions appearing in the proof of the Riemann hypothesis have
properties which generalize those of the gamma function [10]. Assume that the modulus
of an analytic weight function W (z) is a nondecreasing function of distance from the real
axis on every vertical half–line in the upper half–plane. If for some positive number h the
function has an analytic extension to the half–plane −h = iz− − iz such that the function

W (z − 1
2
ih)/W (z + 1

2
ih)

of z has nonnegative part in the upper half–plane and if k is a positive number less than
h, then the function

W (z − 1
2 ik)/W (z + 1

2 ik)

of z will be shown to have nonnegative real part in the upper half–plane. Since the function
is bounded by one in the upper half–plane and is continuous in the closure of the half–
plane, it is sufficient to show that the function has nonnegative real part on the real axis.
It is sufficient to show that the function

W (z)/W ∗(z)
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of z has nonnegative real part in the strip −h < iz− − iz < 0. The function is analytic in
the strip. It can be assumed without loss of generality that the function has a continuous
extension to the closure of the strip and has nonnegative real part on the boundary. An
estimate of the modulus of the function is obtained which permits the conclusion that
the function has nonnegative real part in the strip. The function is a product of three
functions, each of which can be estimated in the strip. The function

W (z)/W (z + ih)

can be estimated in the strip since it is analytic and has nonnegative real part in the
half–plane −h < iz− − iz. The function

W ∗(z − ih)/W ∗(z)

can be estimated in the strip since it is analytic and has nonnegative real part in the
half–plane iz− − iz < h. The function

W (z + ih)/W ∗(z − ih)

is analytic and bounded by one in the strip. The resulting estimates are sufficient for the
desired conclusion.

Hilbert spaces appear whose elements are entire functions and which have these prop-
erties.

(H1) Whenever an element F (z) of the space has a nonreal zero w, the function

F (z)(z − w−)/(z − w)

belongs to the space and has the same norm as F (z).

(H2) A continuous linear functional on the space is defined by taking F (z) into F (w)
for every nonreal number w.

(H3) The function
F ∗(z) = F (z−)−

belongs to the space whenever F (z) belongs to the space, and it always has the same norm
as F (z).

Such spaces have an elementary structure. The complex numbers are treated as a
coefficient Hilbert space with absolute value as norm. If w is a nonreal number, the adjoint
of the transformation of the Hilbert space H into the coefficient space is a transformation
of the coefficient space into H which takes c into K(w, z)c for an entire function K(w, z)
of z. The identity

F (w) = 〈F (t), K(w, t)〉
reproduces the value at w of an element F (z) of the space. A closed subspace consists of
the functions which vanish at λ for a given nonreal number λ. The orthogonal projection
in the subspace of an element F (z) of the space is

F (z)−K(λ, z)K(λ, λ)−1F (λ)
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when the inverse of K(λ, λ) exists. The properties of K(λ, z) as a reproducing kernel
function imply that K(λ, λ) is a nonnegative number which vanishes only when K(λ, z)
vanishes identically. Calculations are restricted to the case in which K(λ, λ) is nonzero
since otherwise the space contains no nonzero element. If w is a nonreal number, the
reproducing kernel function for function values at w in the subspace of functions which
vanish at λ is

K(w, z)−K(λ, z)K(λ, λ)−1K(w, λ).

The axiom (H1) implies that

[K(w, z)−K(λ, z)K(λ, λ)−1K(w, λ)](z − λ−)(w− − λ)(z − λ)−1(w− − λ−)−1

is the reproducing kernel function for function values at w in the subspace of functions
which vanish at λ−. The identity

(z − λ−)(w− − λ)[K(w, z)−K(λ, z)K(λ, λ)−1K(w, λ)]

= (z − λ)(w− − λ−)[K(w, z)−K(λ−, z)K(λ−, λ−)−1K(w, λ−)]

follows. The identity is applied in the equivalent form

(λ− λ−)(z − w−)K(w, z)

= (z − λ−)K(λ, z)K(λ, λ)−1(λ− w−)K(w, λ)

−(z − λ)K(λ−, z)K(λ−, λ−)−1(λ− − w−)K(w, λ−).

The axiom (H3) implies the symmetry condition

K(w, z) = K(w−, z−)−.

An entire function E(z) exists such that the identity

2πi(w− − z)K(w, z) = E(z)E(w)− −E∗(z)E(w−)

holds for all complex numbers z and w. The inequality

|E(z−)| < |E(z)|

applies when z is in the upper half–plane. Since the space is uniquely determined by the
function E(z), it is denoted H(E).

A Hilbert space H(E) is constructed for a given entire function E(z) when the inequality

|E(z−)| < |E(z)|

holds for z in the upper half–plane. A weighted Hardy space F(E) exists since E(z) is an
analytic weight function when considered as a function of z in the upper half–plane. The
desired space H(E) is contained isometrically in the space F(E) and contains the entire
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functions F (z) such that F (z) and F ∗(z) belong to the space F(E). The axioms (H1),
(H2), and (H3) are satisfied. If

E(z) = A(z)− iB(z)

for entire functions A(z) and B(z) such that

A(z) = A∗(z)

and
B(z) = B∗(z)

have real values on the real axis, the reproducing kernel function of the resulting space
H(E) at a complex number w is

K(w, z) =
B(z)A(w)− − A(z)B(w)−

π(z − w−)
.

If a Hilbert space of entire functions is isometrically equal to a space H(E) with

E(z) = A(z)− iB(z)

for entire functions A(z) and B(z) which have real values on the real axis and if(
P Q
R S

)
is a matrix with real entries and determinant one, then the space is also isometrically equal
to a space H(E1) with

E1(z) = A1(z)− iB1(z)

where the entire functions A1(z) and B1(z), which have real values on the real axis, are
defined by the identities

A1(z) = A(z)P +B(z)R

and
B1(z) = A(z)Q+B(z)S.

A Hilbert space of entire functions is said to be symmetric about the origin if an isometric
transformation of the space into itself is defined by taking F (z) into F (−z). The space is
then the orthogonal sum of the subspace of even functions

F (z) = F (−z)

and of the subspace of odd functions

F (z) = −F (−z).
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A Hilbert space H(E) is symmetric about the origin if the defining function E(z) satisfies
the symmetry condition

E(−z) = E∗(z).

The identity

E(z) = A(z)− iB(z)

then holds with A(z) an even entire function and B(z) an odd entire function which
have real values on the real axis. A Hilbert space of entire functions which satisfies the
axioms (H1), (H2), and (H3), which is symmetric about the origin, and which contains a
nonzero element, is isometrically to a space H(E) whose defining function E(z) satisfies
the symmetry condition.

If the defining function E(z) of a space H(E) satisfies the symmetry condition, a Hilbert
space H+ of entire functions, which satisfies the axioms (H1), (H2), and (H3), exists such
that an isometric transformation of the space H+ onto the set of even elements of the space
H(E) is defined by taking F (z) into F (z2). If the space H+ contains a nonzero element,
it is isometrically equal to a space H(E+) for an entire function

E+(z) = A+(z)− iB+(z)

defined by the identities

A(z) = A+(z2)

and

zB(z) = B+(z2).

The functions A(z) and zB(z) are linearly dependent when the space H+ contains no
nonzero element. The space H(E) then has dimension one. A Hilbert space H− of entire
functions, which satisfies the axioms (H1), (H2), and (H3), exists such that an isometric
transformation of the space H− onto the set of odd elements of the space H(E) is defined
by taking F (z) into zF (z2). If the space H− contains a nonzero element, it is isometrically
equal to a space H(E−) for an entire function

E−(z) = A−(z)− iB−(z)

defined by the identities

A(z) = A−(z2)

and

B(z)/z = B−(z2).

The functions A(z) and B(z)/z are linearly dependent when the space H− contains no
nonzero element. The space H(E) then has dimension one.

An entire function S(z) is said to be associated with a space H(E) if

[F (z)S(w)− S(z)F (w)]/(z − w)
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belongs to the space for every complex number w whenever F (z) belongs to the space. If
a function S(z) is associated with a space H(E), then

[S(z)B(w)−B(z)S(w)]/(z − w)

belongs to the space for every complex number w. The scalar product

B(α)−L(β, α)B(β)

= (β − α−)〈[S(t)B(β)−B(t)S(β)]/(t− β), [S(t)B(α)−B(t)S(α)]/(t− α)〉H(E)

is computable since the identities

L(α−, β−) = −L(β, α) = L(α, β)−

and
L(β, γ)− L(α, γ) = L(β, α−)

hold for all complex numbers α, β, and γ. A function ψ(z) of nonreal numbers z, which is
analytic separately in the upper and lower half–planes and which satisfies the identity

ψ(z) + ψ∗(z) = 0,

exists such that
L(β, α) = πiψ(β) + πiψ(α)−

for nonreal numbers α and β. The real part of the function is nonnegative in the upper
half–plane.

If F (z) is an element of the space H(E), a corresponding entire function F∼(z) is defined
by the identity

πB(w)F∼(w) + πiB(w)ψ(w)F (w)

= 〈F (t)S(w), [S(t)B(w−)−B(t)S(w−)]/(t− w−)〉H(E)

when w is not real. If F (z) is an element of the space and if

G(z) = [F (z)S(w)− S(z)F (w)]/(z − w)

is the element of the space obtained for a complex number w, then the identity

G∼(z) = [F∼(z)S(w)− S(z)F∼(w)]/(z − w)

is satisfied. The identity for difference quotients

πG(α)−F∼(β)− πG∼(α)−F (β)

= 〈[F (t)S(β)− S(t)F (β)]/(t− β), G(t)S(α)〉H(E)

−〈F (t)S(β), [G(t)S(α)− S(t)G(α)]/(t− α)〉H(E)

−(β − α−)〈[F (t)S(β)− S(t)F (β)]/(t− β), [G(t)S(α)− S(t)G(α)]/(t− α)〉H(E)
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holds for all elements F (z) and G(z) of the space when α and β are nonreal numbers.

The transformation which takes F (z) into F∼(z) is a generalization of the Hilbert
transformation. The graph of the transformation is a Hilbert space whose elements are
pairs (

F+(z)
F−(z)

)
of entire functions. The skew–conjugate unitary matrix

I =

(
0 −1
1 0

)
is treated as a generalization of the imaginary unit. The space of column vectors with
complex entries is considered with the Euclidean scalar product

〈
(
a
b

)
,

(
a
b

)
〉 =

(
a
b

)−(
a
b

)
.

Examples are obtained in a related theory of Hilbert spaces whose elements are pairs of
entire functions. If w is a complex number, the pair(

[F+(z)S(w)− S(z)F+(w)]/(z − w)
[F−(z)S(w)− S(z)F−(w)]/(z − w)

)
belongs to the space whenever (

F+(z)
F−(z)

)
belongs to the space. The identity for difference quotients

−2π

(
G+(α)
G−(α)

)−
I

(
F+(β)
F−(β)

)
= 〈
(

[F+(t)S(β)− S(t)F+(β)]/(t− β)
[F−(t)S(β)− S(t)F−(β)]/(t− β)

)
,

(
G+(t)S(α)
G−(t)S(α)

)
〉

−〈
(
F+(t)S(β)
F−(t)S(β)

)
,

(
[G+(t)S(α)− S(t)G+(α)]/(t− α)
[G−(t)S(α)− S(t)G−(α)]/(t− α)

)
〉

−(β − α−)〈
(

[F+(t)S(β)− S(t)F+(β)]/(t− β)
[F−(t)S(β)− S(t)F−(β)]/(t− β)

)
,

(
[G+(t)S(α)− S(t)G+(α)]/(t− α)
[G−(t)S(α)− S(t)G−(α)]/(t− α)

)
〉

holds for all elements (
F+(z)
F−(z)

)
and (

G+(z)
G−(z)

)
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of the space when α and β are complex numbers. A continuous transformation of the space
into the space of column vectors with complex entries takes(

F+(z)
F−(z)

)
into (

F+(w)
F−(w)

)
when w is not real. The adjoint transformation takes(

u
v

)
into

M(z)IM(w)− − S(z)IS(w)−

2π(z − w−)

(
u
v

)
for a function

M(z) =

(
A(z) B(z)
C(z) D(z)

)
with matrix values which is independent of w. The entries of the matrix are entire func-
tions which have real values on the real axis. Since the space with these properties is
uniquely determined by S(z) and M(z), it is denoted HS(M). If M(z) is a given matrix
of entire functions which are real on the real axis, necessary and sufficient conditions for
the existence of a space HS(M) are the matrix identity

M(z−)IM(z)− = S(z−)IS(z)−

and the matrix inequality

M(z)IM(z)− − S(z)IS(z)−

z − z− ≥ 0

for all complex numbers z.

An example of a space HS(M) is obtained when an entire function S(z) is associated
with a space H(E). The Hilbert transformation associates an entire function F∼(z) with
every element F (z) of the space in such a way that an identity for difference quotients is
satisfied. The graph of the Hilbert transformation is a Hilbert space Hs(M) with

M(z) =

(
A(z) B(z)
C(z) D(z)

)
and

E(z) = A(z)− iB(z)
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for entire function C(z) and D(z) which have real values on the real axis. The elements
of the space are of the form (

F (z)
F∼(z)

)
with F (z) in H(E). The identity∥∥∥∥( F (t)

F∼(t)

)∥∥∥∥2

Hs(M)

= 2‖F (t)‖2H(E)

is satisfied.

The relationship between factorization and invariant subspaces is an underlying theme
of the theory of Hilbert spaces of entire functions. A matrix factorization applies to entire
functions E(z) such that a space H(E) exists. When several such functions appear in
factorization, it is convenient to index them with a real parameter which is treated as a
new variable. When functions E(a, z) and E(b, z) are given, the question arises whether
the space H(E(a)) with parameter a is contained isometrically in the space H(E(b)) with
parameter b. The question is answered by answering two more fundamental questions.
The first is whether the space H(E(a)) is contained contractively in the space H(E(b)).
The second is whether the inclusion is isometric.

If a Hilbert space P is contained contractively in a Hilbert space H, a unique Hilbert
space Q, which is contained contractively in H, exists such that the inequality

‖c‖2H ≤ ‖a‖2P + ‖b‖2Q

holds whenever c = a+b with a in P and b in Q and such that every element c of H admits
some decomposition for which equality holds. The space Q is called the complementary
space to P in H. Minimal decomposition of an element c of H is unique. The element a
of P is obtained from c under the adjoint of the inclusion of P in H. The element b of Q
is obtained from c under the adjoint of the inclusion of Q in H. The intersection of P and
Q is a Hilbert space P ∧ Q, which is contained contractively in H, when considered with
scalar product determined by the identity

‖c‖2P∧Q = ‖c‖2P + ‖c‖2Q.

The inclusion of P in H is isometric if, and only if, the space P ∧ Q contains no nonzero
element. The inclusion of Q in H is then isometric. A Hilbert space H which is so
decomposed is written P ∨Q.

The space HS(M) is denoted H(M) when S(z) is identically one. An estimate of
coefficients in the power series expansion of M(z) applies when the matrix is the identity
at the origin. A nonnegative matrix(

α β
β γ

)
= M ′(0)I
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is constructed from derivatives at the origin. The Schmidt norm σ(M) of a matrix

M =

(
A B
C D

)
is the nonnegative solution of the equations

σ(M)2 = |A|2 + |B|2 + |C|2 + |D|2.

The coefficients in the power series expansion

M(z) =
∑

Mnz
n

satisfy the inequality
σ(Mn) ≤ (α+ γ)n/n!

for every positive integer n.

If
E(b, z) = A(b, z)− iB(b, z)

is an entire function such that a space H(E(a)) exists and if

M(b, a, z) =

(
A(b, a, z) B(b, a, z)
C(b, a, z) D(b, a, z)

)
is matrix of entire functions such that a space H(M(b, a)) exists, then an entire function

E(a, z) = A(a, z)− iB(a, z)

such that a space H(E(a)) exists is defined by the matrix product

(A(a, z), B(a, z)) = (A(b, z), B(b, z))M(b, a, z).

If F (z) is an element of the space H(E(b)) and if

G(z) =

(
G+(z)
G−(z)

)
is an element of the space H(M(b, a)), then

H(z) = F (z) + A(b, z)G+(z) +B(b, z)G−(z)

is an element of the space H(E(a)) which satisfies the inequality

‖H(z)‖2H(E(a)) ≤ ‖F (z)‖2H(E(b)) + 1
2‖G(z)‖2H(M(b,a)).
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Every element H(z) of the space H(E(a)) admits such a decomposition for which equality
holds.

The set of elements G(z) of the space H(M(b, a)) such that

A(b, z)G+(z) +B(b, z)G−(z)

belongs to the space H(E(b)) is a Hilbert space L with scalar product determined by the
identity

‖G(z)‖2L = ‖G(z)‖2H(M(b,a)) + 2 ‖A(b, z)G+(z) +B(b, z)G−(z)‖2H(E(b)).

The pair

[F (z)− F (w)]/(z − w) =

(
[F+(z)− F+(w)]/(z − w)
[F−(z)− F−(w)]/(z − w)

)
belongs to the space for every complex number w whenever

F (z) =

(
F+(z)
F−(z)

)
belongs to the space. The identity for difference quotients

0 = 〈[F (t)− F (β)]/(t− β), G(t)〉L
−〈F (t), [G(t)−G(α)]/(t− α)〉L

−(β − α−)〈[F (t)− F (β)]/(t− β), [G(t)−G(α)]/(t− α)〉L

holds for all elements F (z) and G(z) of the space when α and β are complex numbers.
These properties imply that the elements of the space L are pairs(

u
v

)
of constants which satisfy the identity

v−u = u−v.

The inclusion of the space H(E(b)) in the space H(E(a)) is isometric if, and only if, no
nonzero pair of complex numbers u and v, which satisfy the identity, exists such that(

u
v

)
belongs to the space H(M(b, a)) and

A(b, z)u+B(b, z)v

belongs to the space H(E(b)).
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A converse result holds. Assume that E(b, z) and E(a, z) are entire functions such
that spaces H(E(b)) and H(E(a)) exist and such that H(E(b)) is contained isometrically
in H(E(a)). Assume that a nontrivial entire function S(z) is associated with the spaces
H(E(b)) and H(E(a)). A generalization of the Hilbert transformation is defined on the
space H(E(a)), which takes an element F (z) of the space H(E(a)) into an entire function
F∼(z). The transformation takes

[F (z)S(w)− S(z)F (w)]/(z − w)

into
[F∼(z)S(w)− S(z)F∼(w)]/(z − w)

for every complex number w whenever it takes F (z) into F∼(z). An identity for difference
quotients is satisfied. A generalization of the Hilbert transformation is also defined with
similar properties on the space H(E(b)). The transformation on the space H(E(b)) is
chosen as the restriction of the transformation on the space H(E(a)). The graph of the
Hilbert transformation on the space H(E(a)) is a space HS(M(a)) for a matrix

M(a, z) =

(
A(a, z) B(a, z)
C(a, z) D(a, z)

)
of entire functions which have real values on the real axis. The matrix is chosen so that
the identity

E(a, z) = A(a, z)− iB(a, z)

is satisfied. The graph of the Hilbert transformation on the space H(E(b)) is a space
HS(M(b)) for a matrix

M(b, z) =

(
A(b, z) B(b, z)
C(b, z) D(b, z)

)
of entire functions which have real values on the real axis. The matrix is chosen so that
the identity

E(b, z) = A(b, z)− iB(b, z)

is satisfied. Since the space H(E(b)) is contained isometrically in the space H(E(a)) and
since the generalized Hilbert transformation on the space H(E(b)) is consistent with the
generalized Hilbert transformation on the spaceH(E(a)), the space HS(M(b)) is contained
isometrically in the space HS(M(a)). A matrix

M(b, a, z) =

(
A(b, a, z) B(b, a, z)
C(b, a, z) D(b, a, z)

)
of entire functions is defined as the solution of the equation

M(a, z) = M(b, z)M(b, a, z).

The entries of the matrix are entire functions which have real values on the real axis. Mul-
tiplication by M(b, z) acts as an isometric transformation of the desired space H(M(b, a))



44 L. DE BRANGES DE BOURCIA May 24, 2004

onto the orthogonal complement of the space HS(M(b)) in the space HS(M(a)). This
completes the construction of a space H(M(b, a)) which satisfies the identity

(A(a, z), B(a, z)) = (A(b, z), B(b, z))M(b, a, z).

A simplification is a fundamental theorem in the theory of isometric inclusions for
Hilbert spaces of entire functions [3]. Assume that E(b, z) and E(a, z) are entire functions,
which have no real zeros, such that spaces H(E(b)) and H(E(a)) exist. If a weighted Hardy
space F(W ) exists such that the spaces H(E(b)) and H(E(a)) are contained isometrically
in the space F(W ), then either the space H(E(b)) is contained isometrically in this space
H(E(a)) or the space H(E(a)) is contained isometrically in the space H(E(b)).

The hereditary nature of symmetry about the origin is an application of the ordering
theorem for Hilbert spaces of entire functions. Assume that E(b, z) and E(a, z) are entire
functions, which have no real zeros, such that spacesH(E(b)) andH(E(a)) exist. The space
H(E(b)) is symmetric about the origin if it is contained isometrically in the space H(E(a))
and if the space H(E(a)) is symmetric about the origin. If the symmetry conditions

E∗(b, z) = E(b,−z)

and
E∗(a, z) = E(a,−z)

are satisfied, then the identity

(A(a, z), B(a, z)) = (A(b, z), B(b, z))M(b, a, z)

holds for a space H(M(b, a)) whose defining matrix

M(b, a, z) =

(
A(b, a, z) B(b, a, z)
C(b, a, z) D(b, a, z)

)
has even entire functions on the diagonal and odd entire functions off the diagonal.

An entire function E(z) is said to be of Pólya class if it has no zeros in the upper
half–plane, if the inequality

|E(x− iy)| ≤ |E(x+ iy)|

holds for every real number x when y is positive, and if |E(x + iy)| is a nondecreasing
function of positive numbers y for every real number x. A polynomial is of Pólya class if
it has no zeros in the upper half–plane. A pointwise limit of entire functions Pólya class is
an entire function of Pólya class if it does not vanish identically. Every entire function of
Pólya class is a limit, uniformly on compact subsets of the complex plane, of polynomials
which have no zeros in the upper half–plane. Every entire function E(z) of Pólya class
which has no zeros is to the form

E(z) = E(0) exp(−az2 − ibz)
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for a nonnegative number a and a complex number b whose real part is nonnegative.
An entire function E(z) of Pólya class is said to be determined by its zeros if it is a
limit uniformly on compact subsets of the complex plane of polynomials whose zeros are
contained in the zeros of E(z). An entire function of Pólya class is the product of an entire
function of Pólya class which has no zeros and an entire function of Pólya class which is
determined by its zeros.

The pervasiveness of the Pólya class is due to its preservation under bounded type
perturbations. An entire function S(z) is of Pólya class if it has no zeros in the upper
half–plane, if it satisfies the inequality

|S(x− iy)| ≤ |S(x+ iy)|

for every real number x when y is positive, and if an entire function E(z) of Pólya class
exists such that

S(z)/E(z)

is of bounded type in the upper half–plane.

Transformations, whose domain and range are contained in Hilbert spaces of entire
functions satisfying the axioms (H1), (H2), and (H3), are defined using reproducing kernel
functions. Assume that the domain of the transformation is contained in a space H(E)
and that the range of the transformation is contained in a space H(E′). The domain of
the transformation is assumed to contain the reproducing kernel functions for function
values in the space H(E). The domain of the adjoint transformation is assumed to contain
the reproducing kernel functions for function values in the space H(E′). Define L(w, z)
to be the element of the space H(E) obtained under the adjoint transformation from
the reproducing kernel function for function values at w in the space H(E′). Then the
transformation takes an element F (z) of the space H(E) into an element G(z) of the space
H(E′) if, and only if, the identity

G(w) = 〈F (t), L(w, t)〉H(E)

holds for all complex numbers w. Define L′(w, z) to be the element of the space H(E′)
obtained under the transformation from the reproducing kernel function for function values
at w in the space H(E). Then the adjoint transformation takes an element F (z) of the
space H(E′) into an element G(z) of the space H(E) if, and only if, the identity

G(w) = 〈F (t), L′(w, t)〉H(E′)

holds for all complex numbers w. The identity

L′(w, z) = L(z, w)−

is a consequence of the definition of the adjoint.

The existence of reproducing kernel functions for transformations with domain and
range in Hilbert spaces of entire functions is a generalization of the axiom (H2). The
transformations are also assumed to satisfy a generalization of the axiom (H1).
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Assume that a given transformation has domain in a space H(E) and range in a space
H(E′). If λ is a nonreal number, then the set of entire functions F (z) such that (z−λ)F (z)
belongs to the space H(E) is a Hilbert space of entire functions which satisfies the axioms
(H1), (H2), and (H3) when considered with the scalar product such that multiplication by
z− λ is an isometric transformation of the space into the space H(E). If F (z) is an entire
function, then (z−λ)F (z) belongs to the space H(E) if, and only if, (z−λ−)F (z) belongs
to the space H(E). The norm of (z − λ)F (z) in the space H(E) is equal to the norm of
(z − λ−)F (z) in the space H(E). The set of entire functions F (z) such that (z − λ)F (z)
belongs to the space H(E′) is a Hilbert space of entire functions which satisfies the axioms
(H1), (H2), and (H3) when considered with the scalar product such that multiplication
by z − λ is an isometric transformation of the space into the space H(E′). If F (z) is an
entire function, then (z − λ)F (z) belongs to the space H(E′) if, and only if, (z − λ−)F (z)
belongs to the space H(E′). The norm of (z − λ)F (z) in the space H(E′) is equal to
the norm of (z − λ−)F (z) in the space H(E′). The induced relation at λ takes an entire
function F (z) such that (z − λ)F (z) belongs to the space H(E) into an entire function
G(z) such that (z − λ)G(z) belongs to the space H(E′) when the given transformation
takes an element H(z) of the space H(E) into the element (z−λ)G(z) of the space H(E′)
and when (z − λ)F (z) is the orthogonal projection of H(z) into the set of elements of the
space H(E) which vanish at λ. The given transformation with domain in the space H(E)
and range in the space H(E′) is said to satisfy the axiom (H1) if the induced relation at λ
coincides with the induced relation at λ− for every nonreal number λ.

An identity in reproducing kernel functions results when the given transformation with
domain in the space H(E) and range in the space H(E′) satisfies the generalization of
the axioms (H1) and (H2) if the induced relations are transformations. The reproducing
kernel function for the transformation at w is an element L(w, z) of the space H(E) such
that the identity

G(w) = 〈F (t), L(w, t)〉H(E)

holds for every complex number w when the transformation takes F (z) into G(z). If the
reproducing kernel function L(λ, z) at λ vanishes at λ for some complex number λ, then
the reproducing kernel function for the adjoint transformation at λ vanishes at λ. Since
the orthogonal projection of K(λ, z) into the subspace of elements of the space H(E) which
vanish at λ is equal to zero, the reproducing kernel function for the adjoint transformation
at λ is equal to zero if the induced relation at λ is a transformation. It follows that L(λ, z)
vanishes identically if it vanishes at λ.

If λ is a nonreal number such that L(λ, z) does not vanish at λ, then for every complex
number w, the function

L(w, z)− L(λ, z)L(λ, λ)−1L(w, λ)

of z is an element of the space H(E) which vanishes at λ. The function

L(w, z)− L(λ, z)L(λ, λ)−1L(w, λ)

(z − λ)(w− − λ−)
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of z is the reproducing kernel function at w for the induced transformation at λ. If L(λ−, z)
does not vanish at λ−, the function

L(w, z)− L(λ−, z)L(λ−, λ−)−1L(w, λ−)

(z − λ−)(w− − λ)

of z is the reproducing kernel function at w for the induced transformation at λ−. Since
these reproducing kernel functions apply to the same transformation, they are equal. The
resulting identity can be written

L(w, z) = [Q(z)P (w−)− P (z)Q(w−)]/[π(z − w−)]

for entire functions P (z) and Q(z) which are associated with the spaces H(E) and H(E′).
If the spaces are symmetric about the origin and if the transformation takes F ∗(−z) into
G∗(−z) whenever it takes F (z) into G(z), then the functions P (z) and Q(z) can be chosen
to satisfy the symmetry conditions

P (−z) = P ∗(z)

and
Q(−z) = −Q∗(z).

A transformation with domain in a space H(E) and range in a space H(E′) is said to
satisfy the axioms (H1) and (H2) if entire functions, which are associated with the spaces
H(E) and H(E′), exist such that the transformation takes an element F (z) of H(E) into
an element G(z) of H(E′), when and only when, the identity

G(w) = 〈F (t), [Q(t)P (w−)− P (t)Q(w−)]/[π(t− w−)]〉H(E)

holds for all complex numbers w and such that the adjoint takes an element F (z) of H(E′)
into an element G(z) of H(E) when, and only when, the identity

G(w) = 〈F (t), [Q∗(t)P (w)− − P ∗(t)Q(w)−]/[π(t− w−)]〉H(E′)

holds for all complex numbers w. The transformation is said to be symmetric about the
origin if the spaces are symmetric about the origin and if the transformation takes F ∗(−z)
into G∗(−z) whenever it takes F (z) into G(z). If the transformation is symmetric about
the origin, the defining functions P (z) and Q(z) can be chosen to satisfy the symmetry
conditions

P (−z) = P ∗(z)

and
Q(−z) = −Q∗(z).

Special Hilbert spaces of entire functions appear which admit maximal dissipative trans-
formations. The transformation, which has domain and range in a space H(E), is defined
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by entire functions P (z) and Q(z) which are associated with the space. The transforma-
tion takes F (z) into G(z+ i) whenever F (z) and G(z+ i) are elements of the space which
satisfy the identity

G(w) = 〈F (t), [Q(t)P (w−)− P (t)Q(w−)]/[π(t− w−)]〉H(E)

for all complex numbers w. Transformations which are maximal of dissipative deficiency
at most one are also constructed in the same way. A relation T with domain and range in
a Hilbert space is said to be maximal of dissipative deficiency at most one if the relation
T +w has an inverse on a closed subspace of codimension at most one for some element w
of the right half–plane and if the relation

(T − w)(T + w)−1

is every where defined and contractive in the subspace. The condition holds for all elements
w of the right half–plane if it holds for some element w of the right half–plane. The space
is assumed to be symmetric about the origin and the functions are assumed to satisfy the
symmetry conditions

P (−z) = P ∗(z)

and
Q(−z) = −Q∗(z)

when the transformation is not maximal dissipative. The reproducing kernel function for
function values at w+i in the space belongs to the domain of the adjoint for every complex
number w. The function

[Q(z)P (w−)− P (z)Q(w−)]/[π(z − w−)]

of z is obtained under the action of the adjoint. A Krein space of Pontryagin index at
most one exists whose elements are entire functions and which admits the function

B∗(z)A(w−)− A(z)B(w)− +B(z)A(w)− − A∗(z)B(w−)

π(z − w−)

of z as reproducing kernel function for function values at w for every complex number w,

A(z) = P (z − 1
2
i)

and
B∗(z) = Q(z − 1

2 i).

The space is a Hilbert space when the transformation is maximal dissipative. The sym-
metry conditions

A(−z) = A∗(z)

and
B(−z) = −B∗(z)

are satisfied when the transformation is not maximal dissipative.

Hilbert spaces, whose elements are entire functions, appear whose structure is derived
from the structure of Hilbert spaces of entire functions satisfying the axioms (H1) and
(H2).
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Theorem 1. Assume that for some entire functions A(z) and B(z) a Hilbert space H
exists whose elements are entire functions and which contains the function

B∗(z)A(w−)− A(z)B(w)− +B(z)A(w)− − A∗(z)B(w−)

π(z − w−)

of z as reproducing kernel function for function values at w for every complex number w.
Then a Hilbert space P exists whose elements are entire functions and which contains the
function

[A∗(z)− iB∗(z)][A(w−) + iB(w−)]− [A(z) + iB(z)][A(w)− − iB(w)−]

2πi(w− − z)

of z as reproducing kernel function for function values at w for every complex number w.
And a Hilbert space Q exists whose elements are entire functions and which contains the
function

[A(z)− iB(z)][A(w)− + iB(w)−]− [A∗(z) + iB∗(z)][A(w−)− iB(w−)]

2πi(w− − z)

of z as reproducing kernel function for function values at w for every complex number w.
The spaces P and Q are contained contractively in the space H and are complementary
spaces to each other in H.

Proof of Theorem 1. The desired conclusion is immediate when the function A(z)− iB(z)
vanishes identically since the space P is then isometrically equal to the space H and the
space Q contains no nonzero element. The desired conclusion is also immediate when the
function A(z) + iB(z) vanishes identically since the space Q is then isometrically equal to
the space H and the space P contains no nonzero element. When

S(z) = [A(z)− iB(z)][A(z) + iB(z)]

does not vanish identically, the determinants S(z) of the matrix

U(z) =

(
A(z) −B(z)
B(z) A(z)

)
and S∗(z) of the matrix

V (z) =

(
A∗(z) B∗(z)
−B∗(z) A∗(z)

)
do not vanish identically. It will be shown that a Hilbert space exists whose elements are
pairs (

F+(z)
F−(z)

)
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of entire functions and which contains the pair

V (z)IV (w)− − U(z)IU(w)−

2π(z − w−)

(
c+
c−

)
of entire functions of z as reproducing kernel function for function values at w in the
direction (

c+
c−

)
for every complex number w and for every pair of complex numbers c+ and c−. The
resulting element of the Hilbert space represents the linear functional which takes a pair(

F+(z)
F−(z)

)
of entire functions of z into the number(

c+
c−

)−(
F+(w)
F−(w)

)
= c−+F+(w) + c−−F−(w).

The existence of the space is equivalent to the existence of a space HS(M) with

M(z) = S(z)U(z)−1V (z).

Since the space HS(M) exists if the matrix

M(z)IM(w)− − S(z)IS(w)−

2π(z − w−)

is nonnegative whenever z and w are equal, the desired Hilbert space exists if the matrix

V (z)IV (w)− − U(z)IU(w)−

2π(z − w−)

is nonnegative whenever z and w are equal. Multiplication by S(z)U(z)−1 is then an
isometric transformation of the space HS(M) onto the desired space. Since the matrix is
diagonal whenever z and w are equal, the matrix is nonnegative if its trace

B∗(z)A(w−)− A(z)B(w)− +B(z)A(w)− − A∗(z)B(w−)

π(z − w−)

is nonnegative whenever z and w are equal. Since the trace as a function of z is the
reproducing kernel function for function values at w in the given space H, the trace is
nonnegative when z and w are equal. This completes the construction of the desired
Hilbert space of pairs of entire functions.
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Since the matrix
V (z)IV (w)− − U(z)IU(w)−

2π(z − w−)

commutes with I for all complex numbers z and w, multiplication by I is an isometric
transformation of the space onto itself. The space is the orthogonal sum of a subspace of
eigenvectors for the eigenvalue i and a subspace of eigenvectors for the eigenvalue −i. The
existence of the desired Hilbert spaces P and Q follows. Every element of the space is of
the form (

F (z) +G(z)
iG(z)− iF (z)

)
with F (z) in P and G(z) in Q. The desired properties of the spaces P and Q follow from
the computation of reproducing kernel functions.

This completes the proof of the theorem.

A Hilbert space P exists whose elements are entire functions and which admits the
function

[A∗(z)− iB∗(z)][A(w−) + iB(w−)]− [A(z) + iB(z)][A(w)− − iB(w)−]

2πi(w− − z)

of z as reproducing kernel function for function values at w for every complex number w
if, and only if, the entire functions A(z) and B(z) satisfy the inequality

|A(z) + iB(z)| ≤ |A∗(z)− iB∗(z)|

when z is in the upper half–plane. The space contains no nonzero element when the entire
functions

A∗(z)− iB∗(z)

and

A(z) + iB(z)

are linearly dependent. Otherwise an entire function S(z), which satisfies the symmetry
condition

S(z) = S∗(z),

exists such that

E(z) = [A∗(z)− iB∗(z)]/S(z)

is an entire function which satisfies the inequality

|E∗(z)| < |E(z)|

when z is in the upper half–plane. Multiplication by S(z) is an isometric transformation
of the space H(E) onto the space P.
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A Hilbert space Q exists whose elements are entire functions and which admits the
function

[A(z)− iB(z)][A(w)− + iB(w)−]− [A∗(z) + iB∗(z)][A(w−)− iB(w−)]

2πi(w− − z

of z as reproducing kernel function for function values at w for every complex number w
if, and only if, the entire functions A(z) and B(z) satisfy the inequality

|A∗(z) + iB∗(z)| ≤ |A(z)− iB(z)|

when z is in the upper half–plane. The space contains no nonzero element when the entire
functions

A∗(z) + iB∗(z)

and
A(z)− iB(z)

are linearly dependent. Otherwise an entire function S(z), which satisfies the symmetry
condition

S(z) = S∗(z),

exists such that
E(z) = [A(z)− iB(z)]/S(z)

is an entire function which satisfies the inequality

|E∗(z)| < |E(z)|

when z is in the upper half–plane. Multiplication by S(z) is an isometric transformation
of the space H(E) onto the space Q.

The structure theory for Hilbert spaces generalizes to Krein spaces of Pontryagin index
at most one whose elements are entire functions and which admit the function

B∗(z)A(w−)− A(z)B(w)− +B(z)A(w)− − A∗(z)B(w−)

π(z − w−)

of z as reproducing kernel function for function values at w for every complex number w
when the entire functions A(z) and B(z) satisfy the symmetry conditions

A(−z) = A∗(z)

and
B(−z) = −B∗(z).

The space is the orthogonal sum of a subspace of even functions and a subspace of odd
functions, both of which are Krein spaces of Pontryagin index at most one. At least one
of the subspaces is a Hilbert space.
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Entire functions A+(z) and B+(z) are defined by the identities

A(z) + A∗(z) = A+(z2) + A∗+(z2)

and
B(z)−B∗(z) = B+(z2)−B∗+(z2)

and
zA(z)− zA∗(z) = A+(z2)− A∗+(z2)

and
zB(z) + zB∗(z) = B+(z2) +B∗+(z2).

A Krein space H+ of Pontryagin index at most one exists whose elements are entire func-
tions and which contains the function

B∗+(z)A+(w−)− A+(z)B+(w)− +B+(z)A+(w)− −A∗+(z)B+(w−)

π(z − w−)

of z as reproducing kernel function for function values at w for every complex number w.
An isometric transformation of the space H+ onto the subspace of even elements of the
space H is defined by taking F (z) into F (z2).

Entire functions A−(z) and B−(z) are defined by the identities

A(z) + A∗(z) = A−(z2) + A∗−(z2)

and
B(z)−B∗(z) = B−(z2)−B∗−(z2)

and
A(z)− A∗(z) = zA−(z2)− zA∗−(z2)

and
B(z) +B∗(z) = zB−(z2) + zB∗−(z2).

A Krein space H− of Pontryagin index at most one exists whose elements are entire func-
tions and which contains the function

B∗−(z)A−(w−)−A−(z)B−(w)− +B−(z)A−(w)− −A∗−(z)B−(w−)

π(z − w−)

of z as reproducing kernel function for function values at w for every complex number w.
An isometric transformation of the space H− onto the subspace of odd elements of H is
defined by taking F (z) into zF (z2).

A Krein space P+ of Pontryagin index at most one exists whose elements are entire
functions and which contains the function

[A∗+(z)− iB∗+(z)][A+(w−) + iB+(w−)]− [A+(z) + iB+(z)][A+(w)− − iB+(w)−]

2πi(w− − z)
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of z as reproducing kernel function for function values at w for every complex number
w. A Krein space Q+ of Pontryagin index at most one exists whose elements are entire
functions and which contains the function

[A+(z)− iB+(z)][A+(w)− + iB+(w)−]− [A∗+(z) + iB∗+(z)][A+(w−)− iB+(w−)]

2πi(w− − z)

of z as reproducing kernel function for function values at w for all complex numbers w.
The spaces P+ and Q+ are Hilbert spaces if H+ is a Hilbert space.

A Krein space P− of Pontryagin index at most one exists whose elements are entire
functions and which contains the function

[A∗−(z)− iB∗−(z)][A−(w−) + iB−(w−)]− [A−(z) + iB−(z)][A−(w)− − iB(w)−]

2πi(w− − z)

of z as reproducing kernel function for function values at w for every complex number
w. A Krein space Q− of Pontryagin index at most one exists whose elements are entire
functions and which contains the function

[A−(z)− iB−(z)][A−(w)− + iB(w)−]− [A∗−(z) + iB∗−(z)][A−(w−)− iB−(w−)]

2πi(w− − z)

of z as reproducing kernel function for function values at w for every complex number w.
The spaces P− and Q− are Hilbert spaces if H− is a Hilbert space.

A relationship between the spaces P+ and P− and between the spaces Q+ and Q−
results from the identities

A+(z) +A∗+(z) = A−(z) +A∗−(z)

and
B+(z)−B∗+(z) = B−(z)−B∗−(z)

and
A+(z)− A∗+(z) = zA−(z)− zA∗−(z)

and
B+(z) +B∗+(z) = zB−(z) + zB∗−(z).

The space P+ contains zF (z) whenever F (z) is an element of the space P− such that
zF (z) belongs to P−. The space P− contains every element of the space P+ such that
zF (z) belongs to P+. The identity

〈tF (t), G(t)〉P+
= 〈F (t), G(t)〉P−

holds whenever F (z) is an element of the space P− such that zF (z) belongs to the space P+

and G(z) is an element of the space P− which belongs to the space P+. The closure in the
space P+ of the intersection of the spaces P+ and P− is a Hilbert space which is contained
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continuously and isometrically in the space P+ and whose orthogonal complement has
dimension zero or one. The closure in the space P− of the intersection of the spaces P+

and P− is a Hilbert space which is contained continuously and isometrically in the space
P− and whose orthogonal complement has dimension zero or one.

The space Q+ contains zF (z) whenever F (z) is an element of the space Q− such that
zF (z) belongs to Q−. The space Q− contains every element F (z) of the space Q+ such
that zF (z) belongs to Q+. The identity

〈tF (t), G(t)〉Q+
= 〈F (t), G(t)〉Q−

holds whenever F (z) is an element of the spaceQ− such that zF (z) belongs to the spaceQ+

and G(z) is an element of the space Q− which belongs to the space Q+. The closure of the
space Q+ in the intersection of the spaces Q+ and Q− is a Hilbert space which is contained
continuously and isometrically in the space Q+ and whose orthogonal complement has
dimension zero or one. The closure in the space Q− of the intersection of the spaces Q+

and Q− is a Hilbert space which is contained continuously and isometrically in the space
Q− and whose orthogonal complement has dimension zero or one.

Hilbert spaces of entire functions satisfying the axioms (H1), (H2), and (H3) whose
defining functions are of Pólya class are characterized by the existence of associated Hilbert
spaces of entire functions. The defining function E(z) of a space H(E) is of Pólya class if,
and only if, a Hilbert space of entire function exists which contains the function

E∗(z)E′(w−)−E(z)E(w)− +E(z)E′(w)− − E∗′(z)E(w−)

π(z − w−)

of z as reproducing kernel function for function values at w for all complex numbers w. A
Hilbert space of entire functions then exists which contains the function

[E′(z)− iE(z)][E′(w)− + iE(w)−]− [E∗
′
(z) + iE(z)][E′(w−)− iE(w−)]

2πi(w− − z)

of z as reproducing kernel function for function values at w for every complex number w.
A Hilbert space of entire function also exists which contains the function

[E∗
′
(z)− iE∗(z)][E′(w−) + iE(w−)]− [E′(z) + iE(z)][E′(w)− − iE(w)−]

2πi(w− − z)

of z as reproducing kernel function for function values at w for all complex numbers w.

Hilbert spaces of entire functions which satisfy the axioms (H1), (H2), and (H3) and
whose defining functions are of Pólya class are constructed from analytic weight functions
which satisfy a related hypothesis. The modulus of the weight function W (z) is assumed
to be a nondecreasing function of distance from the real axis on every vertical half–line
in the upper half–plane. An equivalent condition is the existence of a Hilbert space of
functions analytic in the upper half–plane which contains the function

W (z)W ′(w)− −W ′(z)W (w)−

π(z − w−)
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of z as reproducing kernel for function values at w whenever w is in the upper half–plane.

Entire functions E(c, z) of Pólya class are determined by an analytic weight function
which satisfies the analogue of the Pólya class condition. A space H(E(c)) exists for
every parameter c. Multiplication by exp(itz) is a contractive transformation of the space
H(E(c)) into the space F(W ) for some real number t. The transformation is isometric on
the domain of multiplication by z in the space H(E(c)). An entire function F (z) belongs
to the space H(E(c)) whenever exp(itz)F (z) belongs to the space F(W ) and (z−w)F (z)
belongs to the space H(E(c)) for some complex number w. If entire functions E(a, z)
and E(b, z) of Pólya class are associated with the weight function, then either the space
H(E(b)) is contained contractively in the space H(E(a)) or the space H(E(a)) is contained
contractively in the space H(E(b)).

A choice of defining function is made for each Hilbert space of entire functions. The
parameters are taken in a connected open subset of the positive half–line whose closure
contains the origin. If a and b are parameters such that a is less than b, the identity

(A(a, z), B(a, z)) = (A(b, z), B(b, z))M(b, a, z)

holds for a matrix–valued entire function M(b, a, z) such that a space H(M(b, a)) exists.
The construction is made so that the function M(b, a, z) always has the identity matrix
as value at the origin. The entries of the matrix are then continuous functions of the
parameters a and b when z is held fixed. The integral equation

M(b, a, z)I − I = z

∫ a

b

M(b, t, z)dm(t)

then holds with

m(t) =

(
α(t) β(t)
β(t) γ(t)

)
a nonincreasing matrix–valued function of parameters t whose entries are continuous real–
valued functions of t. The analytic function

E(c, z)/W (z)

of z in the upper half–plane is of bounded type in the half–plane. The mean type τ(c) of
the function in the half–plane is a continuous nonincreasing function of the parameter c.
The matrix valued function

m(t) + iIτ(t) =

(
α(t) β(t)− iτ(t)

β(t) + iτ(t) γ(t)

)
is a nonincreasing function of t. The function τ(t) is characterized as having the great-
est increments compatible with monotonicity of the matrix function. Multiplication by
exp(iτ(c)z) is a contractive transformation of the space H(E(c)) into the space F(W )
which is isometric on the domain of multiplication by z in the space H(E(c)). The union
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of the images of the spaces H(E(c)) is dense in the space F(W ). The intersection of the
images of the spaces H(E(c)) contains no nonzero element of the space F(W ).

A parameter c always exists such that τ(c) is equal to zero. The parameterization can
always be made so that the least such parameter is equal to one. A natural normalization
of the function m(t) of t is then with value zero when t is equal to one.

A construction of Hilbert spaces of entire functions associated with analytic functions
is implicit in the work of Arne Beurling and Paul Malliavin [1]. Principles of potential
theory are introduced which are given a new application in the theory of Hilbert spaces of
entire functions.

Assme that a maximal dissipative transformation in a weighted Hardy space F(W )
is defined for h in the interval [0, 1] by taking F (z) into F (z + ih) whenever F (z) and
F (z + ih) belong to the space. A maximal dissipative transformation in the space is then
also defined for h in the interval [0, 1] by taking F (z) into iF ′(z + ih) whenever F (z) and
F ′(z + ih) belong to the space. Then Hilbert spaces of entire functions exist which are
contained isometrically in the space F(W ), which satisfy the axioms (H1), (H2), and (H3),
and which contain nonzero elements. Such a space is a space H(E) whose defining function
E(z) is of Pólya class. An example of such a space is the set of all entire functions F (z)
such that F (z) and F ∗(z) belong to the space F(W ). It will be shown that a maximal
dissipative transformation in the space H(E) is defined by taking F (z) into F (z + ih)
whenever F (z) and F (z + ih) belong to the space if h belongs to the interval [0, 1]. It
follows that a maximal dissipative transformation in the space H(E) is defined by taking
F (z) into iF ′(z + ih) whenever F (z) and F ′(z + ih) belong to the space if h belongs to
the interval [0, 1].

Since the space H(E) is contained isometrically in the space F(W ), the transformation
which takes F (z) into F (z+ ih) whenever F (z) and F (z+ ih) belong to the space is clearly
dissipative. The maximal dissipative property of the transformation is proved by showing
that every element of the space is of the form F (z) +F (z+ ih) for an element F (z) of the
space such that F (z+ih) belongs to the space. Since a maximal dissipative transformation
in the space F(W ) is defined by taking F (z) into F (z + ih) whenever F (z) and F (z + ih)
belong to the space, an element of the space H(E) is of the form

F (z) + F (z + ih)

for an element F (z) of the space F(W ) such that F (z + ih) belongs to the space F(W ).
Since the elements of the space H(E) are entire functions, F (z) is an entire function. Since
the space H(E) satisfies the axiom (H3)),

F ∗(z) + F ∗(z − ih) = G(z) +G(z + ih)

for an element G(z) of the space F(W ) such that G(z + ih) belongs to the space F(W ).
Then G(z) is an entire function which satisfies the identity

F ∗(z)−G(z + ih) = G(z)− F ∗(z − ih).
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It will be shown that the entire function appearing on the left and right of the identity
vanishes identically. Since F ∗(z) and F ∗(z − ih) then belong to the space F(W ), the
functions F (z) and F (z + ih) belong to the space H(E).

The inequality
|F (z)|2 ≤ ‖F‖2|W (z)|2/[2π(iz− − iz)]

holds when z is in the upper half–plane. Since the inequality

|G∗(z − ih)|2 ≤ ‖G‖2|W (z− + ih)|2/[2π(2h− iz− + iz)]

holds in the half–plane iz− − ih < 2h, the inequality

|F (z)−G∗(z − ih)| ≤ ‖F‖W (z)/[2π(iz− − iz)] 1
2

+‖G‖|W (z− + ih)|/[2π(2h− iz− + iz)]
1
2

holds in the strip 0 < iz− − iz < 2h. Since the modulus of

F (z)−G∗(z − ih)

is periodic of period ih and since the modulus of W (z) is a nondecreasing function of
distance from the real axis on every vertical half–line in the upper half–plane, the function

[F (z)−G∗(z − ih)]/W (z)

is of bounded type in the upper half–plane. A similar argument shows that the function

[G(z)− F ∗(z − ih)]/W (z)

is of bounded type in the upper half–plane. Since the function

F (z)−G∗(z − ih)

is bounded on the imaginary axis, it is a constant. The function vanish identically since it
changes sign when z is replaced by z + ih.

It has been shown that a maximal dissipative transformation in the spaceH(E) is defined
for h in the interval [0, 1] by taking F (z) into F (z+ih) whenever F (z) and F (z+ih) belong
to the space if the space is contained isometrically in the space F(W ) and contains every
entire function F (z) such that F (z) and F ∗(z) belong to the space F(W ). The same
conclusions will be obtained for a space H(E), which is contained isometrically in the
space F(W ), such that an entire function F (z) belongs to the space H(E) whenever F (z)
belongs to the space F(W ) and (z − λ)F (z) belongs to the space H(E) for some complex
number w. Since a maximal dissipative transformation in the space F(W ) is defined by
taking F (z) into F (z + ih) belong to the space, a dissipative transformation in the space
H(E) is defined by taking F (z) into F (z + ih) whenever F (z) and F (z + ih) belong to
the space. The maximal dissipative property of the transformation in the space H(E) is
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proved by showing that every element of the space is of the form F (z) + F (z + ih) for an
element F (z) of the space such that F (z + ih) belongs to the space. It has been shown
that every element of the space H(E) is of the form

F (z) + F (z + ih)

for an entire function F (z) such that F (z) and F ∗(z), as well as F (z+ ih) and F ∗(z− ih),
belong to the space F(W ). Since the entire function

F (z) + F (z + ih)

belongs to the space F(W ), the functions

[F (iy) + F (iy + ih)]/E(iy)

and
[F ∗(iy) + F ∗(iy − ih)/E(iy)

converge to zero in the limit of large positive y. Since the limits of

F (iy)/F (iy + ih)

and
F ∗(iy)/F ∗(iy − ih)

exist in the limit of large positive y and are not both equal to minus one,

F (iy)/E(iy)

and
F (iy + ih)/E(iy)

as well as
F ∗(iy)/E(iy)

and
F ∗(iy − ih)/E(iy)

converge to zero in the limit of large positive y. It follows that the entire functions F (z)
and F (z + ih) belong to the space H(E).

A construction of Hilbert space of entire functions which satisfy the axioms (H1), (H2),
and (H3) is made from Hilbert spaces of entire functions which satisfy the axioms (H1),
(H2), and (H3). Assume that a nontrivial entire function S(z) is associated with a given
space H(E) and that a given complex number λ is not a zero of S(z). A partially isometric
transformation of the spaceH(E) onto a Hilbert space, whose elements are entire functions,
is defined by taking F (z) into

F (z)S(λ)− S(z)F (λ)

z − λ .
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The kernel of the transformation is the set of elements F (z) of the space H(E) such that
F (z) and S(z) are linearly dependent. If

B(z)A(λ)− − A(z)B(λ)−

π(z − λ−)

and S(z) are linearly dependent, then the range of the transformation is isometrically equal
to a space H(E′) with

E′(z) =
E(z)S(λ)− S(z)E(λ)

z − λ .

Maximal dissipative transformations in Hilbert spaces of entire functions which satisfy
the axioms (H1), (H2), and (H3) are constructed inductively from maximal dissipative
transformations in Hilbert spaces of entire functions which satisfy the axioms (H1), (H2),
and (H3).

Theorem 2. Assume that a maximal dissipative transformation is defined in a space
H(E) by entire functions P (z) and Q(z), which are associated with the space, so that the
transformation takes F (z) into G(z + i) whenever F (z) and G(z + i) are elements of the
space which satisfy the identity

G(w) = 〈F (t), [Q(t)P (w−)− P (t)Q(w−)]/[π(t− w−)]〉H(E)

for all complex numbers w. Assume that λ is a complex number such that iλ− − iλ is not
equal to minus one. If the space H(E) contains a nonzero entire function which vanishes
at λ, a space H(E′) exists such that multiplication by z−λ is an isometric transformation
of the space H(E′) onto the set of elements of the space H(E) which vanish at λ. If
a maximal dissipative transformation in the space H(E′) is defined by taking F (z) into
G(z + i) whenever (z − λ)F (z) is the orthogonal projection into the image of the space
H(E′) of an element H(z) of the domain of the maximal dissipative transformation in the
space H(E) which maps into (z−λ)G(z+ i), then entire functions P ′(z) and Q′(z), which
are associated with the space H(E′), exist such that the transformation takes F (z) into
G(z + i) whenever F (z) and G(z + i) are elements of the space such that the identity

G(w) = 〈F (t), [Q′(t)P ′(w−)− P ′(t)Q′(w−)]/[π(t− w−)]〉H(E′)

holds for all complex numbers w.

Proof of Theorem 2. The desired functions are given by the equations

P ′(z) =
Q(z)α− P (z)β

z − λ γ − Q(z)γ − P (z)δ

z + i− λ− α

and

Q′(z) =
Q(z)α− P (z)β

z − λ δ − Q(z)γ − P (z)δ

z + i− λ− β
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when a matrix (
α β
γ σ

)
of complex numbers with determinant one exists such that

Q(z)α− P (z)β

z − λ

and
Q(z)γ − P (z)δ

z + i− λ−

are entire functions. The desired properties of the functions are verified using the identity

(z − λ)
Q′(z)P ′(w−)− P ′(z)Q′(w−)

π(z − w−)
(w− + i− λ−)

=
Q(z)P (w−)− P (z)Q(w−)

π(z − w−)

+π(λ+ i− λ−)
Q(z)γ − P (z)δ

π(z + i− λ−)

Q(w−)α− P (w−)β

π(w− − λ)

which is a consequence of the identities

(z − λ)P ′(z) = P (z) + (λ+ i− λ−)
Q(z)γ − P (z)δ

z + i− λ− α

and

(z − λ)Q′(z) = Q(z) + (λ+ i− λ−)
Q(z)γ − P (z)δ

z + i− λ− β

as well as the identities

(z + i− λ−)P ′(z) = P (z) + (λ+ i− λ−)
Q(z)α− P (z)β

z − λ γ

and

(z + i− λ−)Q′(z) = Q(z) + (λ+ i− λ−)
Q(z)α− P (z)β

z − λ δ.

Since the maximal dissipative relation in the space H(E′) is assumed to be a transfor-
mation, the maximal dissipative transformation in the space H(E) annihilates elements
of the space which are orthogonal to elements which vanish at λ and which are mapped
into elements which vanish at λ− i. An element of the space H(E) which is orthogonal to
elements which vanish at λ is a constant multiple of

B(z)A(λ)− − A(z)B(λ)−

π(z − λ−)
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which is mapped into
Q∗(z)P (λ)− − P ∗(z)Q(λ)−

π(z − λ−)
.

The desired matrix exists when the function obtained does not vanish at λ − i. If the
function vanishes at λ− i, it vanishes identically. The functions P (z) and Q(z) are linearly
dependent if they do not both vanish at λ. Since the maximal dissipative transformation
in the space H(E) then vanishes identically, the maximal dissipative transformation in the
space H(E′) vanishes identically. The functions P ′(z) and Q′(z) are linearly dependent
entire functions which are associated with the spaceH(E′). If the functions P (z) and Q(z)
are linearly independent, they both vanish at λ. The desired matrix exists.

This completes the proof of the theorem.

Maximal transformations of dissipative deficiency at most one in Hilbert spaces of entire
functions which satisfy the axioms (H1), (H2), and (H3) are constructed inductively from
maximal dissipative transformations in Hilbert spaces of entire functions which satisfy the
axioms (H1), (H2), and (H3). Assume that H(E) is a given space of dimension greater
than one and that λ is a complex number such that iλ− − iλ is not equal to minus one
and such that the space contains elements having nonzero values at λ and at λ−− i. Then
a space H(E′) exists such that multiplication by z − λ is an isometric transformation of
the space onto the set of elements of the space H(E) which vanish at λ. Assume that a
maximal dissipative transformation in the space H(E′) is defined by entire functions P ′(z)
and Q′(z), which are associated with the space, such that the transformation takes F (z)
into G(z + i) whenever F (z) and G(z + i) are elements of the space which satisfy the
identity

G(w) = 〈F (t), [Q′(t)P ′(w−)− P ′(t)Q′(w−)]/[π(t− w−)]〉H(E′)

for all complex numbers w. Entire functions P (z) and Q(z), which are associated with the
space H(E), are defined by the equations

P (λ)Q(λ− − i)−Q(λ)P (λ− − i)](z − λ)(z + i− λ−)P ′(z)

= [(z − λ)P (λ)Q(λ− − i)− (z + i− λ−)Q(λ)P (λ− − i)]P (z)

+(λ+ i− λ−)P (λ)P (λ− − i)Q(z)

and
[P (λ)Q(λ− − i)−Q(λ)P (λ− − i)](z − λ)(z + i− λ−)Q′(z)

= [(z + i− λ−)P (λ)Q(λ− − i)− (z − λ)Q(λ)P (λ− − i)]Q(z)

−(λ+ i− λ−)Q(λ)Q(λ− − i)P (z)

with values at λ and λ− − i which are subject only to the condition that

P (λ)Q(λ− − i)−Q(λ)P (λ− − i)

be nonzero. A maximal transformation of dissipative deficiency at most one in the space
H(E) is defined by taking F (z) into G(z + i) whenever F (z) and G(z + i) are elements of
the space which satisfy the identity

G(w) = 〈F (t), [Q(t)P (w−)− P (t)Q(w−)]/[π(t− w−)]〉H(E)
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for all complex numbers w. The transformation in the space H(E′) takes F (z) into G(z+i)
whenever the F (z) and G(z+ i) are elements of the space such that the transformation in
the space H(E) takes H(z) into (z−λ)G(z+ i) and such that (z−λ)F (z) is the orthogonal
projection of H(z) into the set of elements of the space which vanish at λ.

The Riemann hypothesis for Hilbert spaces of entire functions is a conjecture about zeros
of the entire functions which define the spaces. The conjecture is proved when maximal
dissipative transformations are given in related weighted Hardy spaces.

Theorem 3. Assume that W (z) is an analytic weight function such that a maximal dissi-
pative transformation in the weighted Hardy space F(W ) is defined for 0 ≤ h ≤ 1 by taking
F (z) into F (z+ ih) whenever F (z) and F (z+ ih) belong to the space. Assume that entire
functions Sr(z) of Pólya class, which are determined by their zeros, and positive numbers
γr, which satisfy the inequality 1 ≤ γr, are given for positive integers r such that

Sr+1(z)/Sr(z)

is always an entire function and such that the inequality

γr ≤ γr+1

is always satisfied. Assume that a space H(E) is defined by an entire function

E(z) = lim exp(−iγrz)W (z)/Sr(z)

which is obtained as a limit uniformly on compact subsets of the upper half–plane. If the
inequality

−1 ≤ iw − iw−

holds for a zero w− of E(z), then equality holds and the zero is simple.

Proof of Theorem 3. An entire function

Er(z) = Sr(z)E(z)

of Pólya class is defined for every positive integer r such that multiplication by the entire
function Sr(z) is an isometric transformation of the space H(E) into the space H(Er).
The analytic weight function

W (z) = lim exp(iγrz)Er(z)

is recovered as a limit uniformly on compact subsets of the upper half–plane.

A maximal dissipative transformation in the space F(W ) is by hypothesis defined by
taking F (z) into F (z + ih) whenever F (z) and F (z + ih) belong to the space. A maximal
dissipative relation in the spaceH(Er) is defined for every positive integer r. Multiplication
by

W (z)/Er(z)
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is an isometric transformation of the space H(Er) into the space F(W ). The maximal
dissipative relation in the space H(Er) takes F (z) into G(z + ih) whenever F (z) and
G(z + ih) are elements of the space such that the maximal dissipative transformation in
the space F(W ) takes Hn(z) into Hn(z + ih) for every positive integer n, such that

W (z)G(z + ih)/Er(z)

is the limit in the metric topology of the space F(W ) of the elements Hn(z+ ih), and such
that

W (z)F (z)/Er(z)

is the limit in the same topology of the orthogonal projections of the elements Hn(z) in
the image of the space H(Er) in the space F(W ).

If w is in the upper half–plane and if w− is a zero of E(z), the identity

W (z)

Er(z)

Er(z)Er(w)− − E∗r (z)Er(w
−)

2πi(w− − z)
W (w)−

Er(w)−
=
W (z)W (w)−

2πi(w− − z)

implies the identity

W (w)F (w)/Er(w) = W (w − ih)G(w)/Er(w − ih)

when the maximal dissipative relation in the space H(Er) takes F (z) into G(z + ih). For
elements Hn(z) of the space F(W ) such that Hr(z + ih) belongs to the space exist such
that

W (z)G(z + ih)/Er(z)

is a limit in the metric topology of the space of the elements Hn(z + ih) of the space and
such that

W (z)F (z)/Er(z)

is the limit in the same topology of the orthogonal projection of the elements Hn(z)
in the image of the space H(Er). Since multiplication by W (z)/Er(z) is an isometric
transformation of the space H(Er) into the space F(W ), the identity

W (w)F (w)/Er(w) = limHn(w)

holds with the right side converging to

W (w − ih)G(w)/Er(w − ih).

It follows that the adjoint of the maximal dissipative relation in the space H(Er) takes

Er(z)Er(w − ih)− −E∗r (z)Er(w
− + ih)

2πi(w− + ih− z)
Er(w)−

W (w)−

into
Er(z)Er(w)− − E∗r (z)Er(w

−)

2πi(w− − z)
Er(w − ih)−

W (w − ih)−
.
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The numbers γn have a limit γ∞ if they are bounded. An entire function S∞(z) of
Pólya class, which is determined by its zeros, exists such that

S∞(z)/Sr(z)

is an entire function for every positive integer r and such that the entire functions have no
common zeros. The product

E∞(z) = S∞(z)E(z)

is an entire function of Pólya class. The choice of S∞(z) is made so that the identity

exp(iγ∞z)E∞(z) = W (z)

is satisfied. A space H(E∞) exists. Multiplication by exp(iγ∞z) is an isometric transfor-
mation of the space H(E∞) into the space F(W ). The space H(E∞) contains every entire
function F (z) such that

exp(iγ∞z)F (z)

and
exp(iγ∞z)F

∗(z)

belong to the space F(W ). The inequality

iw − iw− ≤ −1

is satisfied and w− is a simple zero of E(z) if equality holds.

If the numbers γr are unbounded, a dense set of elements of the space F(W ) belong to
the union of the ranges of the transformations of the spaces H(Er) into the space F(W )
which take F (z) into

exp(iγrz)W (z)F (z)/Er(z).

Since the identity

W (w)−W (w)

2πi(w− − w)
= lim exp(iγrw)

Er(w)−Er(w)

2πi(w− − w)
exp(−iγrw−)

is satisfied, the functions Sr(z) can be chosen so that the identity

W (w) = lim exp(iγrw)Er(w)

is satisfied. The identity
W (z) = lim exp(iγrz)Er(z)

then holds with uniform convergence on compact subsets of the upper half–plane.

If w is in the upper half–plane and if w− is a zero of E(z) such that the identity
w = w− + ih holds with h a positive number less than or equal to one, then w is a zero
of G(z) whenever the maximal dissipative relation in the space H(Er) takes F (z) into
G(z + ih).
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A restriction of the maximal dissipative transformation in the space F(W ) is defined
by taking H(z) into H(z + ih) whenever H(z) and H(z + ih) are elements of the space
such that w is a zero of H(z). The restricted transformation is sufficient to define the
maximal dissipative relation in the space H(Er). The maximal dissipative relation in the
space H(Er) takes F (z) into G(z + ih) whenever F (z) ad G(z + ih) are elements of the
space such that the maximal dissipative transformation in the space F(W ) takes Hn(z)
into Hn(z + ih) with w a zero of Hn(z) for every positive integer n, such that

W (z)G(z + ih)/Er(z)

is the limit in the metric topology of the space F(W ) of the elements Hn(z+ ih), and such
that

W (z)F (z)/Er(z)

is the limit in the space topology of the orthogonal projections of the elements Hn(z) in
the image of the space H(Er) in the space F(W ).

If H(z) is an element of the space F(W ) such that H(z+ ih) belongs to the space, then
elements Fr(z) and Gr(z + ih) of the space H(Er) exist for every positive integer r such
that the maximal dissipative relation in the space takes Fr(z) into Gr(z + ih) and such
that the limits

H(z) = limW (z)Fr(z)/Er(z)

and

H(z + ih) = limW (z)Gr(z + ih)/Er(z)

are obtained in the metric topology of the space F(W ). Elements Hn(z) of the space
F(W ) such that Hn(z + ih) belongs to the space and such that w is a zero of Hn(z) then
exist such that the limits

H(z) = limHn(z)

and

H(z + ih) = limHn(z + ih)

are obtained in the metric topology of the space F(W ). It follows that w is a zero of H(z)
whenever H(z) is an element of the space F(W ) such that H(z+ ih) belongs to the space.

A contradiction of the maximal dissipative property of the transformation in the space
F(W ) is obtained since such a transformation is densely defined. This completes the proof
that E(z) has no zero w− such that the identity w = w− + ih holds for a positive number
h which is less than or equal to one.

A limiting case of the argument applies when h is equal to zero. Argue by contradiction
assuming that E(z) has a real zero w. Then w is a zero of Er(z) for every positive integer
r. If the numbers γr are bounded, w is a zero of E∞(z). This contradicts the maximal
dissipative property of the transformation which takes H(z) into iH ′(z) whenever H(z)
and H ′(z) belong to H(E∞). If the numbers γr are unbounded, w is a zero of H(z)
whenever H(z) is an element of the space F(W ) such that H ′(z) belongs to the space.
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This contradicts the maximal dissipative property of the transformation which takes H(z)
into iH ′(z) whenever H(z) and iH ′(z) belong to the space.

Another limiting case of the argument is used to show that w− is a simple zero of
E(z) if it is a zero of E(z) which satisfies the identity w = w−+ i. Argue by contradiction
assuming that a double zero is obtained. Then w is a double zero of Er(z) for every positive
integer r. If the numbers γr are bounded, w is a double zero of E∞(z). This contradicts
the maximal dissipative property of the transformation which takes H(z) into iH ′(z + i)
whenever H(z) and H ′(z + i) belong to H(E∞). If the numbers γr are unbounded, w
is a zero of H(z) whenever H(z) is an element of the space F(W ) such that H(z) and
H ′(z + i) belong to the space. This contradicts the maximal dissipative property of the
transformation which takes H(z) into iH ′(z + i) whenever H(z) and H ′(z + i) belong to
the space.

This completes the proof of the theorem.

The Riemann hypothesis for Hilbert spaces of entire functions is also proved when
maximal transformations of dissipative deficiency at most one are given in related weighted
Hardy spaces which satisfy a symmetry condition.

Theorem 4. Assume that W (z) is an analytic weight function, which satisfies the sym-
metry condition

W (−z−) = W (z)−,

such that a maximal transformation of dissipative deficiency at most one in the weighted
Hardy space F(W ) is defined by taking F (z) into zF (z + ih)/(z + ih) when −1 ≤ h ≤ 1.
Assume that entire functions Sr(z) of Pólya class, which are determined by their zeros and
which satisfy the symmetry condition

Sr(−z−) = Sr(z)
−,

and positive numbers γr, which satisfy the inequality 1 ≤ γr, are given for positive numbers
r such that

Sr+1(z)/Sr(z)

is always an entire function and such that the inequality

γr ≤ γr+1

is always satisfied. Assume that a space H(E) is defined by an entire function

E(z) = lim exp(iγrz)W (z)/Sr(z)

which is obtained as a limit uniformly on compact subsets of the upper half–plane. If the
inequality

−1 ≤ iw − iw−

holds for a zero w− of E(z) which does not lie on the imaginary axis, then equality holds
and the zero is simple.
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Proof of Theorem 4. The entire function E(z) is of Pólya class and satisfies the symmetry
condition

E(−z−) = E(z)−.

An entire function
Er(z) = Sr(z)E(z)

of Pólya class, which satisfies the symmetry condition

Er(−z)− = Er(z)
−,

is defined for every positive integer r such that multiplication by the entire function Sr(z)
is an isometric transformation of the space H(E) onto the space H(Er). The analytic
weight function

W (z) = lim exp(iγrz)Er(z)

is recovered as a limit uniformly on compact subsets of the upper half–plane.

A maximal transformation of dissipative deficiency at most one in the space F(W ) is
by hypothesis defined by taking F (z) into zF (z + ih)/(z + ih) whenever F (z) and
zF (z + ih)/(z + ih) belong to the space. The transformation takes F ∗(z) into
zF ∗(−z − ih)/(z+ ih) whenever it takes F (z) into zF (z + ih)/(z+ ih). Multiplication by

W (z)/Er(z)

is an isometric transformation of the space H(Er) into the space F(W ). The maximal rela-
tion of dissipative deficiency at most one in the spaceH(Er) takes F (z) into G(z+ih) when-
ever F (z) and G(z+ ih) are elements of the space such that the maximal transformation of
dissipative deficiency at most one in the space F(W ) takes Hn(z) into zHn(z+ih)/(z+ih)
for every positive integer n, such that

W (z)G(z + ih)/Er(z)

is the limit in the metric topology of the space F(W ) of the elements zHn(z+ ih)/(z+ ih),
and such that

W (z)F (z)/Er(z)

is the limit in the same topology of the orthogonal projections of the elements Hn(z) in
the image of the space H(Er) in the space F(W ). The maximal relation of dissipative
deficiency at most one in the space H(Er) takes F ∗(−z) into G∗(−z − ih) whenever it
takes F (z) into G(z + ih).

If w is in the upper half–plane and if w− is a zero of E(z), the identity

W (z)

Er(z)

Er(z)Er(w)− − E∗r (z)Er(w
−)

2πi(w− − z)
W (w)−

Er(w)−
=
W (z)W (w)−

2πi(w− − z)

implies the identity

wW (w)F (w)/Er(w) = (w − ih)W (w − ih)G(w)/Er(w − ih)
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when the maximal relation of dissipative deficiency at most one in the space H(Er) takes
F (z) into G(z+ ih). For elements Hn(z) of the space F(W ) such that Hn(z+ ih)/(z+ ih)
belongs to the space exist such that

W (z)G(z + ih)/Er(z)

is a limit in the metric topology of the space of the elements zHn(z + ih)/(z + ih) of the
space and such that

W (z)F (z)/Er(z)

is the limit in the same topology of the orthogonal projection of the elements Hn(z)
in the image of the space H(Er). Since multiplication by W (z)/Er(z) is an isometric
transformation of the space H(Er) into the space F(W ), the identity

W (w)F (w)/Er(w) = limHn(w)

holds with the right side converging to

w−1(w − ih)W (w − ih)G(w)/Er(w − ih).

It follows that the adjoint of the maximal dissipative relation in the space H(E) takes

Er(z)Er(w − ih)− − E∗r (z)Er(w
− + ih)

2πi(w− + ih− z)
Er(w)−

w−W (w)−

into
Er(z)Er(w)− − E∗r (z)Er(w

−)

2πi(w− − z)
Er(w − ih)−

(w− + ih)W (w − ih)−
.

The numbers γn have a limit γ∞ if they are bounded. An entire function S∞(z) of
Pólya class, which is determined by its zeros and which satisfies the symmetry condition

S∞(−z−) = S∞(z)−,

exists such that
S∞(z)/Sr(z)

is an entire function for every positive integer r and such that the entire functions have no
common zeros. The product

E∞(z) = S∞(z)E(z)

is an entire function of Pólya class which satisfies the symmetry condition

E∞(−z−) = E∞(z)−.

The choice of S∞(z) is made so that that the identity

exp(iγ∞z)E∞(z) = W (z)
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is satisfied. A space H(E∞) exists. Multiplication by exp(iγ∞z) is an isometric transfor-
mation of the space H(E∞) into the space F(W ). The space H(E∞) contains every entire
function F (z) such that

exp(iγ∞z)F (z)

and
exp(iγ∞z)F

∗(z)

belong to the space F(W ). A maximal transformation of dissipative deficiency at most
one in the space H(E∞) is defined by taking H(z) into zH(z+ ih)/(z+ ih) whenever H(z)
and zH(z + ih)/(z + ih) belong to the space. Since E(z) satisfies the symmetry condition
and since w does not lie on the imaginary axis, −w and w− are distinct zeros of E(z).
Since the identity w = w− + ih cannot hold with h a positive number less than or equal
to one, the inequality −1 ≤ iw − iw− is satisfied and the zeros at −w and w− are simple
if inequality holds.

If the numbers γr are unbounded, a dense set of elements of the space F(W ) belong to
the union of the ranges of the transformations of the spaces H(Er) into the space F(W )
which take F (z) into

exp(iγrz)W (z)F (z)/Er(z).

Since the identity

W (w)−W (w)

2πi(w− − w)
= lim exp(iγrw)

Er(w)−Er(w)

2πi(w− − w)
exp(iγrw

−)

is satisfied, the functions Sr(z) can be chosen so that the identity

W (w) = lim exp(iγrw)Er(w)

is satisfied. The identity
W (z) = lim exp(iγrz)Er(z)

then holds with uniform convergence on compact subsets of the upper half–plane.

If w is in the upper half–plane but not on the imaginary axis and if w− is a zero of E(z)
such that the identity w = w− + ih holds with h a positive number less than or equal to
one, then w is a zero of G(z) whenever the maximal relation of dissipative deficiency at
most one in the space H(Er) takes F (z) into G(z + ih).

A restriction of the maximal transformation of dissipative deficiency at most one in
the space F(W ) is defined by taking H(z) into zH(z + ih)/(z + ih) whenever H(z) and
zH(z+ ih)/(z+ ih) are elements of the space such that w is a zero of H(z). The restricted
transformation is sufficient to define the maximal relation of dissipative deficiency at most
one in the space H(Er). The maximal relation of dissipative deficiency at most one in
the space H(Er) takes F (z) into G(z + ih) whenever F (z) and G(z + ih) are elements of
the space such that the maximal transformation of dissipative deficiency at most one in
the space F(W ) takes Hn(z) into zHn(z + ih)/(z + ih) with w a zero of Hn(z) for every
positive integer n, such that

W (z)G(z + ih)/Er(z)
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is the limit in the metric topology of the space F(W ) of the elements zHn(z+ ih)/(z+ ih),
and such that

W (z)F (z)/Er(z)

is the limit in the same topology of the orthogonal projections of the elements Hn(z) in
the image of the space H(Er) in the space F(W ).

If H(z) is an element of the space F(W ) such that zH(z + ih)/(z + ih) belongs to the
space, then elements Fr(z) and Gr(z + ih) of the space H(Er) exist for every positive
integer r such that the maximal relation of dissipative deficiency at most one in the space
takes Fr(z) into Gr(z + ih) and such that the limits

H(z) = limW (z)Fr(z)/Er(z)

and
zH(z + ih)/(z + ih) = limW (z)Gr(z + ih)/Er(z)

are obtained in the metric topology of the space F(W ). Elements Hn(z) of the space
F(W ) such that zHn(z + ih)/(z + ih) belongs to the space and such w is a zero of Hn(z)
then exist such that the limits

H(z) = limHn(z)

and
zH(z + ih)/(z + ih) = lim zHn(z + ih)/(z + ih)

are obtained in the metric topology of the space F(W ). It follows that w is a zero of H(z)
whenever H(z) is an element of the space F(W ) such that zH(z+ ih)/(z+ ih) belongs to
the space.

Since F ∗(−z) belongs to the space whenever F (z) belongs to the space, −w− is a zero of
H(z) whenever H(z) is an element of the space such that zH(z+ih)/(z+ih) belongs to the
space. Since w does not lie on the imaginary axis, a space of dimension greater than one is
orthogonal to the domain of the transformation which takes H(z) into zH(z+ ih)/(z+ ih)
whenever H(z) and zH(z+ ih)/(z+ ih) belong to the space. A contradiction results since
the transformation is maximal of dissipative deficiency at most one. This completes the
proof that E(z) has no zero w−, which does not lie on the imaginary axis, such that the
identity w = w− + ih holds for a positive number h which is less than or equal to one.

A limiting case of the argument applies when h is equal to zero. Argue by contraction
assuming that E(z) has a real zero w which is not the origin. Then w and −w are
zeros of Er(z) for every positive integer r. If the numbers γr are bounded, w and −w
are zeros of E∞(z). A maximal transformation of dissipative deficiency at most one in
the space H(E∞) is defined by taking H(z) into iH ′(z) − iH(z)/z whenever H(z) and
iH ′(z)−iH(z)/z belong to the space. A contradiction is obtained since w and −w are zeros
of every element of the domain of the transformation. If the numbers γr are unbounded, a
maximal transformation of dissipative deficiency at most one in the space F(W ) is defined
by taking H(z) into iH ′(z)− iH(z)/z whenever h(z) and iH ′(z)− iH(z)/z belong to the
space. A contradiction is obtained since w and −w are zeros of every element of the domain
of the transformation.
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Another limiting case of the argument is used to show that w− is a simple zero of E(z) if
it is a zero which satisfies the identity w = w−+ i and which does not lie on the imaginary
axis. Argue by contradiction assuming that a double zero is obtained. Then w− and −w
are double zeros of Er(z) for every positive integer r. If the numbers γr are bounded, w−

and −w are double zeros of E∞(z). A maximal transformation of dissipative deficiency at
most one in the space H(E∞) is defined by taking H(z) into

izH ′(z + i)/(z + i)− izH(z + i)/(z + i)2

whenever both functions belong to the space. A contradiction is obtained since w− and
−w are zeros of every element of the domain of the transformation. If the numbers γr are
unbounded, a maximal transformation of dissipative deficiency at most one in the space
F(W ) is defined by taking H(z) into

izH ′(z + i)/(z + i)− izH(z + i)/(z + i)2

whenever both functions belong to the space. A contradiction is obtained since w− and
−w are zeros of every element of the domain of the transformation.

This completes the proof of the theorem.

§4. The Radon transformation for locally compact skew–planes

The signature for the r–adic line is the homomorphism ξ into sgn(ξ) of the group of
invertible elements of the r–adic line into the real numbers of absolute value one which has
value minus one on elements whose r–adic modulus is a prime divisor of r. The canonical
measure for the r–adic line is the normalization of Haar measure for the r–adic line for
which the measure of the set of integral elements is equal to the product∏

(1− p−1)

taken over the prime divisors p of r. The Laplace kernel for the r–adic plane is a function
σ(λ) of λ in the r–adic line which vanishes when the p–adic component of pλ is not integral
for some prime divisor p of r. When the p–adic component of pλ is integral for every prime
divisor p of r, σ(λ) is equal to the product∏

(1− p)−1

taken over the prime divisors p of r such that the p–adic component of λ is not integral.
The Laplace kernel for the r–adic plane is obtained as an integral

φ(λ) =

∫
exp(2πiλω−ω)dω

with respect to the canonical measure for the r–adic plane over the set of units of the
r–adic plane. The canonical measure for the r–adic plane is the normalization of Haar
measure for the r–adic plane for which the set of units has measure one. The function

exp(2πiλ)
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of λ in the r–adic line is defined as the continuous extension to the r–adic line of the
function of rational numbers λ.

The canonical measure for the r–adic diline is the normalization of Haar measure for
which the measure of the set of units is equal to the product∏

(1− p−1)

taken over the prime divisors p of r. The Laplace kernel for the r–adic skew–plane is
a function σ(λ) of λ in the r–adic diline which vanishes when the p–adic component of
pλ∗λ is not integral for some prime divisor p of r. When the p–adic component of pλ∗λ is
integral for every prime divisor p of r, σ(λ) is equal to the product∏

(1− p)−1

taken over the prime divisors p of r such that the p–adic component of λ is not integral.
The function σ(λ) is extended to λ in the r–adic skew–plane so as to depend only on the
r–adic modulus of λ∗λ and so as to vanish when the r–adic modulus of λ∗λ is not a rational
number.

The Hankel transformation of character χ for the r–adic plane is a restriction of the
Hankel transformation of character χ for the r–adic diplane. The domain of the Hankel
transformation of character χ for the r–adic diplane is the space of functions f(ξ) of ξ in
the r–adic diplane which vanish when the p–adic component of ξ is not a unit for some
prime divisor p of ρ, which satisfy the identity

f(ωξ) = χ(ω)f(ξ)

for every unit ω of the r–adic diplane, and which are square integrable with respect to the
canonical measure for the r–adic diplane. The canonical measure for the r–adic diplane
is a nonnegative measure on the Borel subsets of the r–adic diplane which is character-
ized within a constant factor by invariance properties. Multiplication by ω multiplies the
canonical measure by the square of the r–adic modulus of ω for every element ω of the
r–adic diplane. The canonical measure is normalized so that the measure of the set of
units of the r–adic diplane is equal to one. The domain of the Hankel transformation of
character χ for the r–adic plane is the set of functions f(ξ) of ξ in the r–adic diplane which
belong to the domain of the Hankel transformation of character χ for the r–adic diplane
and which vanish when the r–adic modulus of ξ is not a rational number. The range
of the Hankel transformation of character χ for the r–adic diplane is the domain of the
Hankel transformation of character χ∗ for the r–adic diplane. The Hankel transformation
of character χ for the r–adic diplane takes a function f(ξ) of ξ in the r–adic diplane into
a function g(ξ) of ξ in the r–adic diplane when the identity∫

χ∗(ξ)−g(ξ)σ(λξ−ξ)dξ = sgn(λ)|λ|−1ε(χ)

∫
χ(ξ)−f(ξ)σ(λ−1ξ−ξ)dξ
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holds for every invertible element λ of the r–adic line whose p–adic component is a unit
for every prime divisor p of ρ. Integration with respect to the canonical measure for the
r–adic diplane. The identity ∫

|f(ξ)|2dξ =

∫
|g(ξ)|2dξ

holds with integration with respect to the canonical measure for the r–adic diplane. If f(ξ)
vanishes when the r–adic modulus of ξ is not a rational number, then g(ξ) vanishes when
the r–adic modulus of ξ is not a rational number. The function f(ξ) of ξ in the r–adic
diplane is the Hankel transform of character χ∗ for the r–adic diplane of the function g(ξ)
of ξ in the r–adic diplane.

The Hankel transformation for the r–adic skew–plane is a restriction of the Hankel
transformation for the r–adic skew–diplane. The domain of the Hankel transformation
for the r–adic skew–diplane is the space of functions f(ξ) of ξ in the r–adic skew–diplane
which satisfy the identity

f( 1
2ω(ξ + ξ−) + 1

2ω
−1(ξ − ξ−)) = |ω|f(ξ)

for every invertible element ω of the r–adic diline, which satisfy the identity

f(ω−ξω) = f(ξ)

for every unit ω of the r–adic skew–diplane, and which are square integrable with respect
to the canonical measure for the fundamental domain of the r–adic skew–diplane. The
fundamental domain of the r–adic skew–diplane is the set of elements ξ of the r–adic
skew–diplane such that 1

2
(ξ + ξ−) is a unit of the r–adic diline. The canonical measure

for the fundamental domain of the r–adic skew–diplane is a nonnegative measure on the
Borel subsets of the fundamental domain which is characterized within a constant factor
by invariance properties. Measure preserving transformations are defined by taking ξ into
ωξ and ξ into ξω for every unit ω of the r–adic skew–diplane. The transformation which
takes ξ into

1
2 (ξ + ξ−) + 1

2ω
−(ξ − ξ−)ω

multiplies the canonical measure by the fourth power of the r–adic modulus of ω−ω for
every element ω of the r–adic skew–diplane. The measure is normalized so that the set of
units has measure one. The domain of the Hankel transformation for the r–adic skew–plane
is the space of functions f(ξ) of ξ in the r–adic skew–diplane which belong to the domain
of the Hankel transformation for the r–adic skew–diplane and which vanish when the r–
adic modulus of ξ−ξ is not a rational number. The range of the Hankel transformation
for the r–adic skew–diplane is the domain of the Hankel transformation for the r–adic
skew–diplane. The transformation takes a function f(ξ) of ξ in the r–adic skew–diplane
into a function g(ξ) of ξ in the r–adic skew–diplane when the identity∫

g(ξ)| 1
2
ξ − 1

2
ξ−|−1σ(λ( 1

2
ξ + 1

2
ξ−)( 1

2
ξ − 1

2
ξ−))dξ

= sgn(λ∗λ)|λ|−2

∫
f(ξ)| 12ξ −

1
2ξ
−|−1σ(λ−1( 1

2ξ + 1
2ξ
−)( 1

2ξ −
1
2ξ
−))dξ



RIEMANN ZETA FUNCTIONS 75

holds for every invertible element λ of the r–adic diline with integration with respect to the
canonical measure for the fundamental domain of the r–adic skew–diplane. The identity∫

|f(ξ)|2dξ =

∫
|g(ξ)|2dξ

holds with integration with respect to the canonical for the fundamental domain. If the
function f(ξ) of ξ in the r–adic skew–diplane vanishes when the r–adic modulus of
ξ−ξ is not a rational number, then the function g(ξ) of ξ in the r–adic skew–diplane
vanishes when the r–adic modulus of ξ−ξ is not a rational number. The function f(ξ) of
ξ in the r–adic skew–diplane is the Hankel transform for the r–adic skew–diplane of the
function g(ξ) of ξ in the r–adic skew–diplane.

The Laplace transformation of character χ for the r–adic plane is a restriction of the
Laplace transformation of character χ for the r–adic diplane. The domain of the Laplace
transformation of character χ for the r–adic diplane is the space of functions f(ξ) of ξ in
the r–adic diplane which vanish when the p–adic component of ξ is not a unit for some
prime divisor p of ρ, which satisfy the identity

f(ωξ) = χ(ω)f(ξ)

for every unit ω of the r–adic diplane, and which are square integrable with respect to the
canonical measure for the r–adic diplane. The domain of the Laplace transformation of
character χ for the r–adic plane is the space of functions f(ξ) of ξ in the r–adic diplane
which belong to the domain of the Laplace transformation of character χ for the r–adic
diplane and which vanish when the r–adic modulus of ξ is not a rational number. The
Laplace transform of character χ for the r–adic diplane of the function f(ξ) of ξ in the
r–adic diplane is the function g(λ) of λ in the r–adic line defined by the integral

g(λ) =

∫
χ(ξ)−f(ξ)σ(λξ−ξ)dξ

with respect to the canonical measure for the r–adic diplane. The identity∫
|g(λ)|2dλ =

∫
|f(ξ)|2dξ

holds with integration on the left with respect to the canonical measure for the r–adic
line and with integration on the right with respect to the canonical measure for the r–adic
diplane. A function g(λ) of λ in the r–adic line, which is square integrable with respect
to the canonical measure for the r–adic line, is a Laplace transform of character χ for the
r–adic plane if, and only if, it satisfies the identity

g(ωλ) = g(λ)

for every unit ω of the r–adic line, vanishes when the p–adic component of pλ is not integral
for some prime divisor p of ρ, satisfies the identity

(1− p)g(λ) = g(ω−1λ)
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when the p–adic component of pλ is a unit for some prime divisor p of ρ and ω is an
element of the r–adic line whose r–adic modulus is p, and satisfies the identity

g(λ) = g(ω−1λ)

when the p–adic component of λ is integral for some prime divisor p of ρ and ω is an
element of the r–adic line whose r–adic modulus is p. A function g(λ) of λ in the r–adic
line is a Laplace transform of character χ for the r–adic plane if, and only if, it is a Laplace
transform of character χ for the r–adic diplane which satisfies the identity

(1− p)g(λ) = g(ω−1λ)− pg(ωλ)

when the p–adic modulus of λ is an odd power of p for some prime divisor p of r and ω is
an element of the r–adic line whose r–adic modulus is p−1.

The Laplace transformation for the r–adic skew–plane is a restriction of the Laplace
transformation for the r–adic skew–diplane. The domain of the Laplace transformation
for the r–adic skew–diplane is the space of functions f(ξ) of ξ in the r–adic skew–diplane
which satisfy the identity

f( 1
2ω(ξ + ξ−) + 1

2ω
−1(ξ − ξ−)) = |ω|f(ξ)

for every invertible element ω of the r–adic diline, which satisfy the identity

f(ω−ξω) = f(ξ)

for every unit ω of the r–adic skew–diplane, and which are square integrable with respect to
the canonical measure for the fundamental domain of the r–adic skew–diplane. The domain
of the Laplace transformation for the r–adic skew–plane is the space of functions f(ξ) of
ξ in the r–adic skew–diplane which belong to the domain of the Laplace transformation
for the r–adic skew–diplane and which vanish when the r–adic modulus of ξ−ξ is not a
rational number. The Laplace transform for the r–adic skew–diplane of the function f(ξ)
of ξ in the r–adic skew–diplane is the function g(λ) of λ in the r–adic diline which is
defined by the integral

g(λ) =

∫
f(ξ)| 12ξ −

1
2ξ
−|−1σ(λ( 1

2ξ + 1
2ξ
−)( 1

2ξ −
1
2ξ
−))dξ

with respect to the canonical measure for the fundamental domain of the r–adic skew–
diplane. The identity ∫

|g(λ)|2dλ =

∫
|f(ξ)|2dξ

holds with integration on the left with respect to the canonical measure for the r–adic
diline and with integration on the right with respect to the canonical measure for the
fundamental domain of the r–adic skew–diplane. A function g(λ) of λ in the r–adic diline
is a Laplace transform for the r–adic skew–diplane if, and only if, it satisfies the identity

g(ωλ) = g(λ)
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for every unit ω of the r–adic diline and is square integrable with respect to the canonical
measure for the r–adic diline. A function g(λ) of λ in the r–adic diline is a Laplace
transform for the r–adic skew–plane if, and only if, it is a Laplace transform for the r–adic
skew–diplane which satisfies the identity

(1− p)f(λ) = f(ω−1λ)− pf(ωλ)

when the p–adic modulus of λ∗λ is an odd power of p for some prime divisor p of r and ω
is an element of the r–adic diline such that the p–adic modulus of ω∗ω is p.

The Radon transformation of character χ for the r–adic diplane is a nonnegative self–
adjoint transformation in the space of functions f(ξ) of ξ in the r–adic diplane which
vanish when the p–adic component of ξ is not a unit for some prime divisor p of ρ, which
satisfy the identity

f(ωξ) = χ(ω)f(ξ)

for every unit ω of the r–adic diplane, and which are square integrable with respect to the
canonical measure for the r–adic diplane. The transformation takes a function f(ξ) of ξ
in the r–adic diplane into a function g(ξ) of ξ in the r–adic diplane when the identity

g(ξ) =

∫
f(ξ + η)dη

holds formally with integration with respect to Haar measure for the space of elements η
of the r–adic plane whose p–adic component vanishes for every prime divisor p of ρ and
which satisfy the identity

η−ξ + ξ−η = 0.

Haar measure is normalized so that the set of integral elements has measure one. The
integral is accepted as the definition when

f(ξ) = χ(ξ)σ(λξ−ξ)

for an invertible element λ of the r–adic line whose p–adic component is a unit for every
prime divisor p of ρ, in which case

g(ξ) = |λ|− 1
2 f(ξ).

The formal integral is otherwise interpreted as the identity∫
χ(ξ)−g(ξ)σ(λξ−ξ)dξ = |λ|− 1

2

∫
χ(ξ)−f(ξ)σ(λξ−ξ)dξ

for every invertible element λ of the r–adic line whose p–adic component is a unit for every
prime divisor p of ρ. Integration is with respect to the canonical measure for the r–adic
diplane.

The Radon transformation of character χ for the r–adic plane is a nonnegative self–
adjoint transformation in the space of functions f(ξ) of ξ in the r–adic diplane which
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vanish when the p–adic component of ξ is not a unit for some prime divisor p of ρ or when
the r–adic modulus of ξ is not a rational number, which satisfy the identity

f(ωξ) = χ(ω)f(ξ)

for every unit ω of the r–adic diplane, and which are square integrable with respect to
the canonical measure for the r–adic diplane. The transformation takes a function f(ξ)
of ξ in the r–adic diplane into a function g(ξ) of ξ in the r–adic diplane when the Radon
transformation for the r–adic diplane takes a function fn(ξ) of ξ in the r–adic diplane
into a function gn(ξ) of ξ in the r–adic diplane for every positive integer n, such that the
function g(ξ) is the limit of the functions gn(ξ) in the metric topology of the space of square
integrable functions with respect to the canonical measure, and such that the function f(ξ)
is the limit in the same topology of the orthogonal projections of the functions fn(ξ) in the
space of functions which vanish when the r–adic modulus of ξ is not a rational number.

The Radon transformation for the r–adic skew–diplane is a nonnegative self–adjoint
transformation in the space of functions f(ξ) of ξ in the r–adic skew–diplane which satisfy
the identity

f( 1
2
ω(ξ + ξ−) + 1

2
ω−1(ξ − ξ−)) = |ω|f(ξ)

for every invertible element ω of the r–adic diline, which satisfy the identity

f(ω−ξω) = f(ξ)

for every unit ω of the r–adic skew–diplane, and which are square integrable with respect
to the canonical measure for the fundamental domain of the r–adic skew–diplane. The
function

| 1
2
ξ − 1

2
ξ−|−1σ(λ( 1

2
ξ + 1

2
ξ−)( 1

2
ξ − 1

2
ξ−))

of ξ in the r–adic skew–diplane is an eigenfunction of the Radon transformation for the
r–adic skew–diplane for the eigenvalue |λ|−1 when λ is an invertible element of the r–adic
diline. The transformation takes a function f(ξ) of ξ in the r–adic skew–diplane into a
function g(ξ) of ξ in the r–adic skew–diplane when the identity∫

g(ξ)| 1
2
ξ − 1

2
ξ−|−1σ(λ( 1

2
ξ + 1

2
ξ−)( 1

2
ξ − 1

2
ξ−))dξ

= |λ|−1

∫
f(ξ)| 12ξ −

1
2ξ
−|−1σ(λ

1
2 ( 1

2ξ + 1
2ξ
−)( 1

2ξ −
1
2ξ
−))dξ

holds for every invertible element λ of the r–adic diline. Integration is with respect to the
canonical measure for the fundamental domain of the r–adic skew–diplane.

The Radon transformation for the r–adic skew–plane is a nonnegative self–adjoint trans-
formation in the space of functions f(ξ) of ξ in the r–adic skew–diplane which satisfy the
identity

f( 1
2ω(ξ + ξ−) + 1

2ω
−1(ξ − ξ−)) = |ω|f(ξ)

for every invertible element unit ω of the r–adic diline, which satisfy the identity

f(ω−ξω) = f(ξ)
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for every unit ω of the r–adic skew–diplane, which vanish when the r–adic modulus of ξ−ξ
is not a rational number and which are square integrable with respect to the canonical
measure for the r–adic skew–diplane, is not a rational number. The transformation takes
a function f(ξ) of ξ in the r–adic skew–diplane into a function g(ξ) of ξ in the r–adic skew–
diplane when the Radon transformation for the r–adic skew–diplane takes a function fn(ξ)
of ξ in the r–adic skew–diplane into a function gn(ξ) of ξ in the r–adic skew–diplane for
every positive integer n, such that the function g(ξ) is the limit of the functions gn(ξ) in the
metric topology of the space of square integrable functions with respect to the canonical
measure for the r–adic skew–diplane, and such that the function f(ξ) is the limit in the
same topology of the orthogonal projections of the functions fn(ξ) in the space of functions
which vanish when the r–adic modulus of ξ−ξ is not a rational number.

A property of the range of the Laplace transformation of character χ for the r–adic
plane is required to know that a nonnegative self–adjoint transformation is obtained as
Radon transformation of character χ for the r–adic plane. The range of the Laplace
transformation of character χ for the r–adic diplane is the space of functions f(λ) of λ in
the r–adic line which are square integrable with respect to the canonical measure for the
r–adic line, which satisfy the identity

f(ωλ) = f(λ)

for every unit ω of the r–adic line, which vanish when the p–adic component of pλ is not
integral for some prime divisor p of ρ, which satisfy the identity

(1− p)f(λ) = f(ω−1λ)

when the p–adic component of pλ is a unit for some prime divisor p of ρ with ω an element
of the r–adic line whose r–adic modulus is p, and which satisfy the identity

f(λ) = f(ω−1λ)

when the p–adic component of λ is integral for some prime divisor p of ρ with ω an element
of the r–adic line whose r–adic modulus is p. A self–adjoint transformation in the range
of the Laplace transformation of character χ for the r–adic diplane is defined by taking
a function f(λ) of λ in the r–adic line into a function g(λ) of λ in the r–adic line if the
identity

g(λ) = |λ|− 1
2 f(λ)

holds when the p–adic component of λ is a unit for every prime divisor p of ρ. The range
of the Laplace transformation of character χ for the r–adic plane is the space of functions
f(λ) of λ in the r–adic line which belong to the range of the Laplace transformation of
character χ for the r–adic diplane and which satisfy the identity

(1− p)f(λ) = f(ω−1λ)− pf(ωλ)

when the p–adic modulus of λ is an odd power of p for some prime divisor p of r and ω is
an element of the r–adic line whose r–adic modulus is p. The closure of the set of functions
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f(λ) of λ in the r–adic line, which belong to the range of the Laplace transformation of
character χ for the r–adic diplane, such that a function g(λ) of λ in the r–adic line, which
belongs to the range of the Laplace transformation of character χ for the r–adic plane,
exists such that the identity

g(λ) = |λ|− 1
2 f(λ)

holds when the p–adic component of λ is a unit for every prime divisor p of ρ, is the
set of functions f(λ) of λ in the r–adic line which belong to the range of the Laplace
transformation of character χ for the r–adic diplane and which satisfy the identity

(p
1
2 − p− 1

2 )f(λ) = f(ωλ)− f(ω−1λ)

when the p–adic component of λ is a unit for every prime divisor p of ρ and the p–adic
modulus of λ is an odd power of p for some prime divisor p of r, which is not a divisor of
ρ, with ω an element of the r–adic line whose r–adic modulus is p−1. It will be shown that
a dense set of elements of the range of the Laplace transformation of character χ for the
r–adic plane are orthogonal projections of such functions f(λ) of λ in the r–adic line. It is
sufficient to show that no nonzero element of the range of the Laplace transformation of
character χ for the r–adic plane is orthogonal to all such functions f(λ) of λ in the r–adic
line. A function g(λ) of λ in the r–adic line, which belongs to the range of the Laplace
transformation of character χ for the r–adic diplane and which is orthogonal to all such
functions f(λ) of λ in the r–adic line, satisfies the identity

(p
1
2 − p− 1

2 )g(λ) = p−1g(ω−1λ)− pg(ωλ)

when the p–adic component of λ is a unit for every prime divisor p of ρ and the p–adic
modulus of λ is an odd power of p for some prime divisor p of r, which is not a divisor of
ρ, with ω an element of the r–adic line whose r–adic modulus is p. The function g(λ) of
λ in the r–adic line vanishes identically when the function is in the range of the Laplace
transformation of character χ for the r–adic plane.

A property of the range of the Laplace transformation for the r–adic skew–plane is
required to know that a nonnegative self–adjoint transformation is obtained as the Radon
transformation for the r–adic skew–plane. The range of the Laplace transformation for the
r–adic skew–diplane is the space of functions f(λ) of λ in the r–adic diline which satisfy
the identity

f(ωλ) = f(λ)

for every unit ω of the r–adic diline and which are square integrable with respect to the
canonical measure for the r–adic diline. A nonnegative self–adjoint transformation in the
range of the Laplace transformation for the r–adic skew–diplane is defined by taking a
function f(λ) of λ in the r–adic diline into the function |λ|−1f(λ) of λ in the r–adic diline.
The range of the Laplace transformation for the r–adic skew–plane is the space of functions
f(λ) of λ in the r–adic diline which belong to the range of the Laplace transformation for
the r–adic skew–diplane and which satisfy the identity

(1− p)f(λ) = f(ω−1λ)− pf(ωλ)
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when the p–adic modulus of λ∗λ is an odd power of p for some prime divisor p of r and ω
is an element of the r–adic diline such that the r–adic modulus of ω∗ω is p. The closure
of the set of functions f(λ) of λ in the r–adic diline, which belong to the range of the
Laplace transformation for the r–adic skew–diplane, such that the function |λ|−1f(λ) of
λ in the r–adic diline belongs to the range of the Laplace transformation for the r–adic
skew–plane, is the set of functions f(λ) of λ in the r–adic diline which belong to the range
of the Laplace transformation for the r–adic skew–diplane and which satisfy the identity

(p
1
2 − p− 1

2 )f(λ) = f(ωλ)− f(ω−1λ)

when the p–adic modulus of λ∗λ is an odd power of p for some prime divisor p of r and
ω is an element of the r–adic diline such that the r–adic modulus of ω∗ω is p. It will
be shown that a dense set of elements of the range of the Laplace transformation for
the r–adic skew–plane are orthogonal projections of such functions f(λ) of λ in the r–
adic diline. It is sufficient to show that no nonzero element of the range of the Laplace
transformation for the r–adic skew–plane is orthogonal to all such functions f(λ) of λ in
the r–adic diline. A function g(λ) of λ in the r–adic diline, which belongs to the range
of the Laplace transformation for the r–adic skew–diplane and which is orthogonal to all
such functions f(λ) of λ in the r–adic diline, satisfies the identity

(p
1
2 − p− 1

2 )g(λ) = p−1g(ω−1λ)− pg(ωλ)

when the p–adic modulus of λ∗λ is an odd power of p for some prime divisor p of r and ω
is an element of the r–adic diline such that the r–adic modulus of ω∗ω is p. The function
g(λ) of λ in the r–adic diline vanishes identically when the function is in the range of the
Laplace transformation for the r–adic skew–line.

§5. The Euler product for Riemann zeta functions

The r–adelic upper half–plane is the set of elements of the r–adelic plane whose Eu-
clidean component belongs to the upper half–plane and whose r–adic component is an
invertible element of the r–adic line. An element of the r–adelic upper half–plane, whose
Euclidean component is τ+ + iy for a real number τ+ and a positive number y and whose
r–adic component is τ−, is written τ + iy with τ the element of the r–adelic line whose
Euclidean component is τ+ and whose r–adic component is τ−. A character of order ν for
the r–adelic diplane is a function χ(ξ) of ξ in the r–adelic diplane which is a product

χ(ξ) = χ(ξ+)χ(ξ−)

of a character of order ν for the Euclidean diplane and a character modulo ρ for the r–adic
diplane which is of the same parity as ν. The canonical measure for the r–adelic line is the
Cartesian product of Haar measure for the Euclidean line and the canonical measure for
the r–adic line. The fundamental domain for the r–adelic line is the set of elements of the
r–adelic line whose r–adic modulus is a positive integer whose prime divisors are divisors
of r and which is not divisible by the square of a prime. The canonical measure for the
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fundamental domain is the restriction to the Borel subsets of the fundamental domain of
the canonical measure for the r–adelic line. The theta function of order ν and character
χ for the r–adelic plane is a function θ(λ) of λ in the r–adelic upper half–plane which is
defined as a sum

θ(λ) =
∑

χ(ω)− exp(πiω2
+λ+/ρ)σ(ω2

−λ−)

over the nonzero principal elements ω of the r–adelic line whose p–adic component is a
unit for every prime divisor p of ρ. The theta function of order ν and character χ∗ for the
r–adelic upper half–plane is the function

θ∗(λ) = θ(−λ−)−

of λ in the r–adelic upper half–plane.

The r–adelic upper half–diplane is the set of the r–adelic diplane whose Euclidean
component belongs to the upper half–plane and whose r–adic component is an invertible
element of the r–adic diline. An element of the r–adelic upper half–diplane, whose Eu-
clidean component is τ+ + iy for a real number τ+ and a positive number y and whose
r–adic component is τ−, is written τ + iy with τ the element of the r–adelic diline whose
Euclidean component is τ+ and whose r–adic component is τ−. A harmonic function of
order ν for the r–adelic skew–diplane is a function φ(ξ) of ξ in the r–adelic skew–diplane
which depends only on the Euclidean component of ξ and which is a harmonic function of
order ν for the Euclidean skew–diplane as a function of the Euclidean component of ξ. The
canonical measure for the r–adelic diline is the Cartesian product of Haar measure for the
Euclidean diline and the canonical measure for the r–adic diline. The fundamental domain
for the r–adelic diline is the set of elements ξ of the r–adelic diline such that the r–adic
modulus of ξ∗ξ is a positive integer whose prime divisors are divisors of r and which is not
divisible by the square of a prime. The canonical measure for the fundamental domain is
the restriction to the Borel subsets of the fundamental domain of the canonical measure
for the r–adelic diline. The theta function of order ν and harmonic φ for the r–adelic
skew–line is a function θ(λ) of λ in the r–adelic upper half–diplane which is defined as a
sum

2θ(λ) =
∑

ων+τ(ω+)− exp(2πiω+λ+)σ(ω−λ−)

over the nonzero principal elements ω of the r–adelic line. The coefficient τ(a/b) is defined
for a nonzero rational number a/b as τ(a) when a and b are relative prime integers, which
are relatively prime to r, such that a is positive. The theta function of order ν and character
χ∗ for the r–adelic upper half–diplane is the function

θ∗(λ) = θ(−λ−)−

of λ in the r–adelic upper half–diplane.

The Hankel transformation of order ν and character χ for the r–adelic plane is a re-
striction of the Hankel transformation of order ν and character χ for the r–adelic diplane.
The canonical measure for the r–adelic diplane is the Cartesian product of the canonical
measure for the Euclidean diplane and the canonical measure for the r–adic diplane. The
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fundamental domain for the r–adelic diplane is the set of elements of the r–adelic diplane
whose r–adic component is a unit. The canonical measure for the fundamental domain is
the restriction to the Borel subsets of the fundamental domain of the canonical measure for
the r–adelic diplane. The domain of the Hankel transformation of order ν and character
χ for the r–adelic diplane is the space of functions f(ξ) of ξ in the r–adelic diplane which
vanish when the p–adic component of ξ is not a unit for some prime divisor p of ρ, which
satisfy the identity

f(ωξ) = χ(ω)f(ξ)

for every unit ω of the r–adelic diplane, which satisfy the identity

f(ξ) = f(ωξ)

for every nonzero principal element ω of the r–adelic line whose p–adic component is a unit
for every prime divisor p of ρ, and which are square integrable with respect to the canonical
measure for the fundamental domain. The range of the Hankel transformation of order ν
and character χ for the r–adelic diplane is the domain of the Hankel transformation of order
ν and character χ∗ for the r–adelic diplane. The domain of the Hankel transformation of
order ν and character χ for the r–adelic plane is the space of functions f(ξ) of ξ in the
r–adelic diplane which belong to the domain of the Hankel transformation of order ν and
character χ for the r–adelic diplane and which vanish when the r–adic modulus of ξ is not
a rational number. The Hankel transformation of order ν and character χ for the r–adelic
diplane takes a function f(ξ) of ξ in the r–adelic diplane into a function g(ξ) of ξ in the
r–adelic diplane when the identity∫

χ∗(ξ)−g(ξ)θ∗(λξ−ξ)dξ = (i/λ+)1+ν sgn(λ−)|λ|−1
− ε(χ)

∫
χ(ξ)−f(ξ)θ(−λ−1ξ−ξ)dξ

holds for λ in the r–adelic upper half–plane with integration with respect to the canonical
measure for the fundamental domain. The identity∫

|f(ξ)|2dξ =

∫
|g(ξ)|2dξ

holds with integration with respect to the canonical measure for the fundamental domain.
If the function f(ξ) of ξ in the r–adelic diplane vanishes when the r–adic modulus of ξ is
not a rational number, then the function g(ξ) of ξ in the r–adelic diplane vanishes when
the r–adic modulus of ξ is not a rational number. The function f(ξ) of ξ in the r–adelic
diplane is the Hankel transform of order ν and character χ∗ for the r–adelic diplane of the
function g(ξ) of ξ in the r–adelic diplane.

The Hankel transformation of order ν and harmonic φ for the r–adelic skew–plane is
a restriction of the Hankel transformation of order ν and harmonic φ for the r–adelic
skew–diplane. The domain of the Hankel transformation of order ν and harmonic φ for
the r–adelic skew–diplane is the space of functions f(ξ) of ξ in the r–adelic skew–diplane
which satisfy the identity

f( 1
2ω(ξ + ξ−) + 1

2ω
−1(ξ − ξ−)) = |ω|f(ξ)
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for every invertible element ω of the r–adelic diline, which satisfy the identity

φ(ξ)f(ω−ξω) = φ(ω−ξω)f(ξ)

for every unit ω of the r–adelic skew–diplane, which satisfy the identity

f(ξ) = f( 1
2 (ξ + ξ−) + 1

2ω
−(ξ − ξ−)ω)

for every nonzero principal element ω of the r–adelic skew–plane, and which are square
integrable with respect to the canonical measure for the fundamental domain of the r–adelic
skew–diplane. The fundamental domain of the r–adelic skew–diplane is the set of elements
ξ of the r–adelic skew–diplane such that 1

2(ξ+ ξ−) is a unit of the r–adelic diline and such
that the square of the r–adic modulus of ξ−ξ is a positive integer whose prime divisors are
divisors of r and which is not divisible by the square of a prime. The canonical measure
for the fundamental domain of the r–adelic skew–diplane is the restriction to the Borel
subsets of the fundamental domain of the Cartesian product of the canonical measure for
the fundamental domain of the Euclidean skew–diplane and the canonical measure for the
fundamental domain of the r–adic skew–diplane. The domain of the Hankel transformation
of order ν and harmonic φ for the r–adelic skew–plane is the space of functions f(ξ) of ξ
in the r–adelic skew–diplane which belong to the domain of the Hankel transformation of
order ν and harmonic φ for the r–adelic skew–diplane and which vanish when the r–adic
modulus of ξ−ξ is not a rational number. The range of the Hankel transformation of order
ν and harmonic φ for the r–adelic skew–diplane is the domain of the Hankel transformation
of order ν and harmonic φ∗ for the r–adelic skew–diplane. The Hankel transformation of
order ν and harmonic φ for the r–adelic skew–diplane takes a function f(ξ) of ξ in the
r–adelic skew–diplane into a function g(ξ) of ξ in the r–adelic skew–diplane when the
identity ∫

φ∗(ξ)−g(ξ)| 12ξ −
1
2ξ
−|−1θ∗(λ| 12ξ + 1

2ξ
−|| 12ξ −

1
2ξ
−|)dξ

= (i/λ+)2+2ν sgn(λ∗λ)|λ|−2
−

∫
φ(ξ)−f(ξ)| 12ξ −

1
2ξ
−|−1θ(−λ−1| 12ξ + 1

2ξ
−|| 12ξ −

1
2ξ
−|)dξ

holds when λ is in the r–adelic upper half–diplane with integration with respect to the
canonical measure for the fundamental domain of the r–adelic skew–diplane. The notation

| 12ξ + 1
2ξ
−|| 12ξ −

1
2ξ
−|

is used in the argument of the theta function for an element of the r–adelic diline with
nonnegative Euclidean component which has the same Euclidean and r–adic modulus as

( 1
2ξ + 1

2ξ
−)( 1

2ξ − iξ−).

The identity ∫
|f(ξ)|2dξ =

∫
|g(ξ)|2dξ
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holds with integration with respect to the canonical measure for the fundamental domain.
If the function f(ξ) of ξ in the r–adelic skew–diplane vanishes when the r–adic modulus
of ξ−ξ is not a rational number, then the function g(ξ) of ξ in the r–adelic skew–diplane
vanishes when the r–adic modulus of ξ−ξ is not a rational number. The function f(ξ) of
ξ in the r–adelic skew–diplane is the Hankel transform of order ν and harmonic φ for the
r–adelic skew–diplane of the function g(ξ) of ξ in the
r–adelic skew–diplane.

The nonzero principal elements of the r–adelic line, whose p–adic component is a unit
for every prime divisor p of ρ, are applied in an isometric summation for the r–adelic
diplane. If a function f(ξ) of ξ in the r–adelic diplane satisfies the identity

f(ωξ) = χ(ω)f(ξ)

for every unit ω of the r–adelic diplane, vanishes outside of the fundamental domain, and
is square integrable with respect to the canonical measure for the r–adelic diplane, then a
function g(ξ) of ξ in the r–adelic diplane, which vanishes when the p–adic component of ξ
is not a unit for some prime divisor p of ρ, which satisfies the identity

g(ωξ) = χ(ω)g(ξ)

for every unit ω of the r–adelic diplane, and which satisfies the identity

g(ξ) = g(ωξ)

for every nonzero principal element ω of the r–adelic line whose p–adic component is a
unit for every prime divisor p of ρ, is defined by the sum

2g(ξ) =
∑

f(ωξ)

over the nonzero principal elements ω of the r–adelic line whose p–adic component is a
unit for every prime divisor p of ρ. The identity∫

|f(ξ)|2dξ =

∫
|g(ξ)|2dξ

holds with integration with respect to the canonical measure for the fundamental domain
of the r–adelic diplane. If the function f(ξ) of ξ in the r–adelic diplane vanishes when
the r–adic modulus of ξ is not rational, then the function g(ξ) of ξ in the r–adelic diplane
vanishes when the r–adic modulus of ξ is not rational. If a function h(ξ) of ξ in the r–adelic
diplane vanishes when the p–adic component of ξ is not a unit for some prime divisor p of
ρ, satisfies the identity

h(ωξ) = χ(ω)h(ξ)

for every unit ω of the r–adelic diplane, satisfies the identity

h(ξ) = h(ωξ)
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for every nonzero principal element ω of the r–adelic line whose p–adic component is a
unit for every prime divisor p of ρ, and is square integrable with respect to the canonical
measure for the fundamental domain, then h(ξ) is equal to g(ξ) for a function f(ξ) of ξ in
the r–adelic diplane which is equal to h(ξ) when ξ is in the fundamental domain.

The nonzero principal elements of the r–adelic skew–plane are applied in an isometric
summation for the r–adelic skew–diplane. If a function f(ξ) of ξ in the r–adelic skew–
diplane satisfies the identity

f( 1
2
ω(ξ + ξ−) + 1

2
ω−1(ξ − ξ−)) = |ω|f(ξ)

for every invertible element ω of the r–adelic diline, satisfies the identity

φ(ξ)f(ω−ξω) = φ(ω−ξω)f(ξ)

for every unit ω of the r–adelic skew–diplane, vanishes when 1
2 (ξ + ξ−) is a unit of the

r–adelic diline but ξ does not belong to the fundamental domain for the r–adelic skew–
diplane, and is square integrable with respect to the canonical measure for the fundamental
domain, then a function g(ξ) of ξ in the r–adelic skew–diplane which satisfies the identity

g( 1
2ω(ξ + ξ−) + 1

2 (ω−1(ξ − ξ−)) = |ω|g(ξ)

for every invertible element ω of the r–adelic diline, which satisfies the identity

φ(ξ)g(ω−ξω) = φ(ω−ξω)g(ξ)

for every unit ω of the r–adelic skew–diplane, and which satisfies the identity

g(ξ) = g( 1
2
(ξ + ξ−) + 1

2
ω−(ξ − ξ−)ω)

for every nonzero principal element ω of the r–adelic skew–plane, is defined by the sum

24g(ξ) =
∑

f( 1
2
(ξ + ξ−) + 1

2
ω−(ξ − ξ−)ω)

for every nonzero principal element ω of the r–adelic skew–plane. The identity∫
|f(ξ)|2dξ =

∫
|g(ξ)|2dξ

holds with integration with respect to the canonical measure for the fundamental domain
of the r–adelic skew–diplane. If the function f(ξ) of ξ in the r–adelic skew–diplane vanishes
when the r–adic modulus of ξ−ξ is not a rational number, then the function g(ξ) of ξ in the
r–adelic skew–diplane vanishes when the r–adic modulus of ξ−ξ is not a rational number.
The identity

2g(ξ) =
∑

τ(ω+)f( 1
2(ξ + ξ−) + 1

2ω(ξ − ξ−))



RIEMANN ZETA FUNCTIONS 87

holds with summation over the nonzero principal elements ω of the r–adelic line. If a
function h(ξ) of ξ in the r–adelic skew–diplane satisfies the identity

h( 1
2ω(ξ + ξ−) + 1

2ω
−1(ξ − ξ−)) = |ω|h(ξ)

for every invertible element ω of the r–adelic diline, satisfies the identity

φ(ξ)h(ω−ξω) = φ(ω−ξω)h(ξ)

for every unit ω of the r–adelic skew–diplane, satisfies the identity

h(ξ) = h( 1
2 (ξ + ξ−) + 1

2ω
−(ξ − ξ−)ω)

for every nonzero principal element ω of the r–adelic skew–plane, and is square integrable
with respect to the canonical measure for the fundamental domain of the r–adelic skew–
diplane, then h(ξ) is equal to g(ξ) for a function f(ξ) of ξ in the r–adelic skew–diplane
which is equal to h(ξ) when ξ is in the fundamental region.

The Laplace transformation of order ν and character χ for the r–adelic plane is a
restriction of the Laplace transformation of order ν and character χ for the r–adelic diplane.
The domain of the Laplace transformation of order ν and character χ for the r–adelic
diplane is the space of functions f(ξ) of ξ in the r–adelic diplane which vanish when the
p–adic component of ξ is not a unit for some prime divisor p of ρ, which satisfy the identity

f(ωξ) = χ(ω)f(ξ)

for every unit ω of the r–adelic diplane, which satisfy the identity

f(ξ) = f(ωξ)

for every nonzero principal element ω of the r–adelic line whose p–adic component is a
unit for every prime divisor p of ρ, and which are square integrable with respect to the
canonical measure for the fundamental domain of the r–adelic diplane. The domain of
the Laplace transformation of order ν and character χ for the r–adelic plane is the space
of functions f(ξ) of ξ in the r–adelic diplane which belong to the domain of the Laplace
transformation of order ν and character χ for the r–adelic diplane and which vanish when
the r–adic modulus of ξ is not a rational number. The Laplace transform of order ν and
character χ for the r–adelic diplane of the function f(ξ) of ξ in the r–adelic diplane is a
function g(λ) of λ in the r–adelic upper half–plane which is defined by the integral

2πg(λ) =

∫
χ(ξ)−f(ξ)θ(λξ−ξ)dξ

with respect to the canonical measure for the fundamental domain of the r–adelic diplane.
The function g(λ) of λ in the r–adelic upper half–plane is an analytic function of the
Euclidean component of λ when the r–adic component of λ is held fixed. The identity

g(ωλ) = g(λ)
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holds for every unit ω of the r–adelic line whose Euclidean component is the unit of the
unit of the Euclidean line. The function vanishes when the p–adic component of pλ is not
integral for some prime divisor p of ρ. The identity

(1− p)g(λ) = g(ω−1λ)

holds when the p–adic component of pλ is a unit for some prime divisor p of ρ and ω is
an element of the r–adelic line whose Euclidean component is a unit of the Euclidean line
and whose r–adic modulus is p. The identity

g(λ) = g(ω−1λ)

holds when the p–adic component of λ is integral for some prime divisor p of ρ and ω is an
element of the r–adelic line whose Euclidean component is the unit of the Euclidean line
and whose r–adic modulus is p. The identity

g(λ) = χ(ω)g(ω2λ)

holds for every nonzero principal element ω of the r–adelic line whose p–adic component
is a unit for every prime divisor p of ρ. When ν is zero, the identity

(2π/ρ) sup

∫
|g(τ + iy)|2dτ =

∫
|f(ξ)|2dξ

holds with the least upper bound taken over all positive numbers y. The identity

(2π/ρ)ν
∫ ∞

0

∫
|g(τ + iy)|2yν−1dτdy = Γ(ν)

∫
|f(ξ)|2dξ

holds when ν is positive. Integration on the left is with respect to the canonical measure for
the fundamental domain of the r–adelic line. Integration on the right is with respect to the
canonical measure for the fundamental domain of the r–adelic diplane. These properties
characterize Laplace transforms of order ν and character χ for the r–adelic diplane. A
function g(λ) of λ in the r–adelic line is a Laplace transform of order ν and character χ
for the r–adelic plane if, and only if, it is a Laplace transform of order ν and character χ
for the r–adelic diplane which satisfies the identity

(1− p)g(λ) = g(ω−1λ)− pg(ωλ)

when the p–adic modulus of λ is an odd power of p for some prime divisor p of r and ω
is an element of the r–adelic line whose Euclidean component is the unit of the Euclidean
line and whose r–adic modulus is p.

The Laplace transformation of order ν and harmonic φ for the r–adelic skew–plane is
a restriction of the Laplace transformation of order ν and harmonic φ for the r–adelic
skew–diplane. The domain of the Laplace transformation of order ν and harmonic φ for
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the r–adelic skew–diplane is the space of functions f(ξ) of ξ in the r–adelic skew–diplane
which satisfy the identity

f( 1
2ω(ξ + ξ−) + 1

2ω
−1(ξ − ξ−)) = |ω|f(ξ)

for every invertible element ω of the r–adelic diline, which satisfy the identity

φ(ξ)f(ω−ξω) = φ(ω−ξω)f(ξ)

for every unit ω of the r–adelic skew–diplane, which satisfy the identity

f(ξ) = f( 1
2
(ξ + ξ−) + 1

2
ω−(ξ − ξ−)ω)

for every nonzero principal element ω of the r–adelic skew–plane, and which are square
integrable with respect to the canonical measure for the fundamental domain of the r–
adelic skew–diplane. The domain of the Laplace transformation of order ν and harmonic φ
for the r–adelic skew–plane is the space of functions f(ξ) of ξ in the r–adelic skew–diplane
which belong to the domain of the Laplace transformation of order ν and harmonic φ
for the r–adelic skew–diplane and which vanish when the r–adic modulus of ξ−ξ is not
a rational number. The Laplace transform of order ν and harmonic φ for the r–adelic
skew–diplane of the function f(ξ) of ξ in the r–adelic skew–diplane is a function g(λ) of λ
in the r–adelic upper half–diplane which is defined by the integral

4πg(λ) =

∫
φ(ξ)−f(ξ)| 1

2
ξ − 1

2
ξ−|−1θ(λ| 1

2
ξ + 1

2
ξ−|| 1

2
ξ − 1

2
ξ−|)dξ

with respect to the canonical measure for the fundamental domain of the r–adelic skew–
diplane. The notation

| 12ξ + 1
2ξ
−|| 12ξ −

1
2ξ
−|

is used in the argument of the theta function for an element of the r–adelic diline with
nonnegative Euclidean component which has the same Euclidean and r–adic modulus as

( 1
2ξ + 1

2ξ
−)( 1

2ξ −
1
2ξ
−).

The function g(λ) of λ in the r–adelic upper half–diplane is an analytic function of the
Euclidean component of λ when the r–adic component of λ is held fixed. The identity

g(ωλ) = g(λ)

holds for every unit ω of the r–adelic diline whose Euclidean component is the unit of the
Euclidean line. The identity

g(λ) = g(ωλ)

holds for every nonzero principal element ω of the r–adelic line. The identity

(4π)2+2ν

∫ ∞
0

∫
|g(τ + iy)|2y2νdτdy = Γ(1 + 2ν)

∫
|f(ξ)|2dξ
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holds when ν is positive. Integration on the left is with respect to the canonical measure
for the fundamental domain of the r–adelic diline. Integration on the right is with respect
to the canonical measure for the fundamental domain of the r–adelic skew–diplane. These
properties characterize Laplace transforms of order ν and harmonic φ for the r–adelic
skew–diplane. A function g(λ) of λ in the r–adelic diline is a Laplace transform of order
ν and harmonic φ for the r–adelic skew–plane if, and only if, it is a Laplace transform of
order ν and harmonic φ for the r–adelic skew–diplane which satisfies the identity

(1− p)g(λ) = g(ω−1λ)− pg(ωλ)

when the p–adic modulus of λ∗λ is an odd power of p for some prime divisor p of r and ω is
an element of the r–adelic diline whose Euclidean component is the unit of the Euclidean
line and for which the r–adic modulus of ω∗ω is equal to p.

The Radon transformation of order ν and character χ for the r–adelic diplane is a
maximal dissipative transformation in the space of functions f(ξ) of ξ in the r–adelic
diplane which vanish when the p–adic component of ξ is not a unit for some prime divisor
p of ρ, which satisfy the identity

f(ωξ) = χ(ω)f(ξ)

for every unit ω of the r–adelic diplane, which satisfy the identity

f(ξ) = f(ωξ)

for every nonzero principal element ω of the r–adelic line whose p–adic component is a unit
for every prime divisor p of ρ, and which are square integrable with respect to the canonical
measure for the fundamental domain of the r–adelic diplane. The transformation takes a
function f(ξ) of ξ in the r–adelic diplane into a function g(ξ) of ξ in the r–adelic diplane
when the identity

g(ξ) =

∫
f(ξ + η)dη

is formally satisfied with integration with respect to Haar measure for the space of elements
η of the r–adelic diplane which satisfy the identity

η−ξ + ξ−η = 0.

Haar measure is defined as the Cartesian product of Haar measure for the space of elements
η+ of the Euclidean diplane which satisfy the identity

η−+ξ+ + ξ−+η+ = 0

and Haar measure for the space of elements η− of the r–adic diplane which satisfy the
identity

η−−ξ− + ξ−−η− = 0.
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The integral is accepted as the definition of the Radon transformation of order ν and
character χ for the r–adelic diplane when

f(ξ) = χ(ξ)θ(λξ−ξ)

with λ an element of the r–adelic upper half–plane whose p–adic component is a unit for
every prime divisor p of ρ, in which case

g(ξ) = (iρ/λ+)
1
2 |λ|−

1
2
− f(ξ)

with the square root of iρ/λ+ taken in the right half–plane. The adjoint of the Radon
transformation of order ν and character χ for the r–adelic diplane takes a function f(ξ) of
ξ in the r–adelic diplane into a function g(ξ) of ξ in the r–adelic diplane when the identity∫

χ(ξ)−g(ξ)θ(λξ−ξ)dξ = (iρ/λ+)
1
2 |λ|−

1
2
−

∫
χ(ξ)−f(ξ)θ(λξ−ξ)dξ

holds when λ is an invertible element of the r–adelic upper half–plane whose p–adic com-
ponent is a unit for every prime divisor p of ρ. Integration is with respect to the canonical
measure for the fundamental domain of the r–adelic diplane.

The Radon transformation of order ν and character χ for the r–adelic plane is a maximal
dissipative transformation in the space of functions f(ξ) of ξ in the r–adelic diplane which
vanish when the p–adic component of ξ is not a unit for some prime divisor p of ρ or when
the r–adic modulus of ξ is not a rational number, which satisfy the identity

f(ωξ) = χ(ω)f(ξ)

for every unit ω of the r–adelic diplane, which satisfy the identity

f(ξ) = f(ωξ)

for every nonzero principal element ω of the r–adelic diplane whose p–adic component is
a unit for every prime divisor p of ρ, and which are square integrable with respect to the
canonical measure for the fundamental domain of the r–adelic diplane. The transformation
takes a function f(ξ) of ξ in the r–adelic diplane into a function g(ξ) in the r–adelic diplane
when the Radon transformation for the r–adelic diplane takes a function fn(ξ) of ξ in the
r–adelic diplane into a function gn(ξ) of ξ in the r–adelic diplane for every positive integer
n, such that the function g(ξ) is the limit of the functions gn(ξ) in the metric topology
of the space of square integrable functions with respect to the canonical measure for the
fundamental domain of the r–adelic diplane, and such that the function f(ξ) is the limit
in the same topology of the orthogonal projections of the functions fn(ξ) in the space of
functions which vanish when the r–adic modulus of ξ is not a rational number.

The Radon transformation of order ν and harmonic φ for the r–adelic skew–diplane is
a maximal dissipative transformation in the space of functions f(ξ) of ξ in the r–adelic
skew–diplane which satisfy the identity

f( 1
2ω(ξ + ξ−) + 1

2ω
−1(ξ − ξ−)) = |ω|f(ξ)
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for every invertible element ω of the r–adelic diline, which satisfy the identity

φ(ξ)f(ω−ξω) = φ(ω−ξω)f(ξ)

for every unit ω of the r–adelic skew–diplane, which satisfy the identity

f(ξ) = f( 1
2 (ξ + ξ−) + 1

2ω
−(ξ∗ − ξ−)ω)

for every nonzero principal element ω of the r–adelic skew–plane, and which are square
integrable with respect to the canonical measure for the fundamental domain of the r–
adelic skew–diplane. The function

φ(ξ)| 12ξ −
1
2ξ
−|−1θ(λ| 12ξ + 1

2ξ
−|| 12ξ −

1
2ξ
−|)

of ξ in the r–adelic skew–diplane is an eigenfunction of the Radon transformation of order
ν and harmonic φ for the r–adelic skew–diplane for the eigenvalue (i/λ+)|λ|−1

− when λ is
in the r–adelic upper half–diplane. The adjoint of the Radon transformation of order ν
and harmonic φ for the r–adelic skew–diplane takes a function f(ξ) of ξ in the r–adelic
skew–diplane into a function g(ξ) of ξ in the r–adelic skew–diplane when the identity∫

φ∗(ξ)−g(ξ)| 12ξ −
1
2ξ
−|−1θ(λ| 12ξ + 1

2ξ
−|| 12ξ −

1
2ξ
−|)dξ

= (i/λ+)|λ|−1
−

∫
φ(ξ)−f(ξ)| 1

2
ξ − 1

2
ξ−|−1θ(λ| 1

2
ξ + 1

2
ξ−|| 1

2
ξ − 1

2
ξ−|)dξ

holds when λ is in the r–adelic upper half–diplane. Integration is with respect to the
canonical measure for the fundamental domain of the r–adelic skew–diplane.

The Radon transformation of order ν and harmonic φ for the r–adelic skew–plane is
a maximal dissipative transformation in the space of functions f(ξ) of ξ in the r–adelic
skew–diplane which satisfy the identity

f( 1
2
ω(ξ + ξ−) + 1

2
ω−1(ξ − ξ−)) = |ω|f(ξ)

for every invertible element ω of the r–adelic diline, which satisfy the identity

φ(ξ)f(ω−ξω) = φ(ω−ξω)f(ξ)

for every unit ω of the r–adelic skew–diplane, which satisfy the identity

f(ξ) = f( 1
2
(ξ + ξ−) + 1

2
ω−(ξ − ξ−)ω)

for every nonzero principal element ω of the r–adelic skew–plane, which vanish when the r–
adic modulus of ξ−ξ is not a rational number, and which are square integrable with respect
to the canonical measure for the fundamental domain of the r–adelic skew–diplane. The
transformation takes a function f(ξ) of ξ in the r–adelic skew–diplane into a function g(ξ)
of ξ in the r–adelic skew–diplane when the Radon transformation of order ν and harmonic
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φ for the r–adelic skew–diplane takes a function fn(ξ) of ξ in the r–adelic skew–diplane
into a function gn(ξ) of ξ in the r–adelic skew–diplane for every positive integer n, such
that the function g(ξ) is the limit of the functions gn(ξ) in the metric topology of the space
of square integrable functions with respect to the canonical measure for the fundamental
domain of the r–adelic skew–diplane, and such that the function f(ξ) is the limit in the
same topology of the orthogonal projections of the functions fn(ξ) in the space of functions
which vanish when the r–adic modulus of ξ−ξ is not a rational number.

The Mellin transformation of order ν and character χ for the r–adelic plane is a spectral
theory for the Laplace transformation of order ν and character χ for the r–adelic plane.
The domain of the Laplace transformation of order ν and character χ for the r–adelic plane
is the space of functions f(ξ) of ξ in the r–adelic diplane which vanish when the p–adic
component of ξ is not a unit for some prime divisor p of ρ or when the r–adic modulus of
ξ is not a rational number, which satisfy the identity

f(ωξ) = χ(ω)f(ξ)

for every unit ω of the r–adelic diplane, which satisfy the identity

f(ξ) = f(ωξ)

for every nonzero principal element ω of the r–adelic line whose p-adic component is a unit
for every prime divisor p of ρ, and which are square integrable with respect to the canonical
measure for the fundamental domain of the r–adelic diplane. The Laplace transform of
order ν and character χ for the r–adelic diplane of the function f(ξ) of ξ in the r–adelic
diplane is the function g(λ) of λ in the r–adelic upper half–plane defined by the integral

2πg(λ) =

∫ ∞
0

χ(ξ)−f(ξ)θ(λξ−ξ)dξ

with respect to the canonical measure for the fundamental domain of the r–adelic diplane.
The Mellin transform of order ν and character χ for the r–adelic plane of the function f(ξ)
of ξ in the r–adelic diplane is an analytic function F (z) of z in the upper half–plane which
is defined by the integral

F (z) =

∫ ∞
0

g(λ)t
1
2 ν−

1
2−

1
2 izdt

under the constraint
λ+ = it

when λ− is a unit of the r–adic line if the function f(ξ) of ξ in the r–adelic plane vanishes
in the neighborhood |ξ| < a of the origin. A computation of the integral is made from the
zeta function

ζ(s) =
∑

τ(n)n−s

of order ν and character χ for the r–adelic line, which is defined in the half–plane Rs > 1
as a sum over the positive integers n whose prime divisors are divisors of r but not of ρ.
The identity

τ(n) = χ(n)−
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holds when the prime divisors of a positive integer n are divisors of r not not of ρ. The
zeta function is represented in the complex plane by the Euler product

ζ(s)−1 =
∏

(1− τ(p)p−s)

taken over the prime divisors p of r which are not divisors of ρ. The analytic weight
function

W (z) = (π/ρ)−
1
2 ν−

1
2 + 1

2 izΓ( 1
2ν + 1

2 −
1
2 iz)ζ(1− iz)

is represented in the upper half–plane by the integral

W (z) =

∫ ∞
0

θ(λ)t
1
2 ν−

1
2−

1
2 izdt

under the constraint

λ+ = it

when λ− is a unit of the r–adic line. The identity

2πF (z)/W (z) =

∫
χ(ξ)−f(ξ)|ξ|iz−ν−1dξ

holds when z is in the upper half–plane. Integration is with respect to the canonical
measure for the fundamental domain of the r–adelic diplane. The function

a−izF (z)

of z in the upper half–plane is characterized as an element of the weighted Hardy space
F(W ) which satisfies the identity∫ +∞

−∞
|F (t)/W (t)|2dt =

∫
|f(ξ)|2dξ.

Integration on the right is with respect to the canonical measure for the fundamental
domain of the r–adelic diplane. If the Hankel transform of order ν and character χ for
the r–adelic plane of the function f(ξ) of ξ in the r–adelic diplane is a function g(ξ) of ξ
in the r–adelic diplane which vanishes when |ξ| < a, then the Mellin transform of order ν
and character χ for the r–adelic plane of the function g(ξ)− of ξ in the r–adelic diplane is
an entire function which is the analytic extension of F ∗(z) to the complex plane.

The Mellin transformation of order ν and harmonic φ for the r–adelic skew–plane is a
spectral theory for the Laplace transformation of order ν and harmonic φ for the r–adelic
skew–plane. The domain of the Laplace transformation of order ν and harmonic φ for the
r–adelic skew–plane is the space of functions f(ξ) of ξ in the r–adelic skew–diplane which
satisfy the identity

f( 1
2ω(ξ + ξ−) + 1

2ω
−1(ξ − ξ−)) = |ω|f(ξ)
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for every invertible element ω of the r–adelic diline, which satisfy the identity

φ(ξ)f(ω−ξω) = φ(ω−ξω)f(ξ)

for every unit ω of the r–adelic skew–diplane, which satisfy the identity

f(ξ) = f( 1
2 (ξ + ξ−) + 1

2ω
−(ξ − ξ−)ω)

for every nonzero principal element ω of the r–adelic skew–plane, which vanish when the r–
adic modulus of ξ−ξ is not a rational number, and which are square integrable with respect
to the canonical measure for the fundamental domain of the r–adelic skew–diplane. The
Laplace transform of order ν and harmonic φ for the r–adelic skew–plane of the function
f(ξ) of ξ in the r–adelic skew–diplane is the function g(λ) of λ in the r–adelic upper
half–diplane which is defined by the integral

4πg(λ) =

∫
φ(ξ)−f(ξ)| 1

2
ξ − 1

2
ξ−|−1θ(λ| 1

2
ξ + 1

2
ξ−|| 1

2
ξ − 1

2
ξ−|)dξ

with respect to the canonical measure for the fundamental domain of the r–adelic skew–
diplane. The notation

| 1
2
ξ + 1

2
ξ−|| 1

2
ξ − 1

2
ξ−|

is used in the argument of the theta function for an element of the r–adelic diline with
nonnegative Euclidean component which has the same Euclidean and r–adic modulus as

( 1
2
ξ + 1

2
ξ−)( 1

2
ξ − 1

2
ξ−).

The Mellin transform of order ν and harmonic φ for the r–adelic skew–plane of the function
f(ξ) of ξ in the r–adelic skew–diplane is an analytic function F (z) of z in the upper half–
plane which is defined by the integral

F (z) =

∫ ∞
0

g(λ)tν−izdt

under the constraint
λ+ = it

when λ− is a unit of the r–adic diline if the function f(ξ) of ξ in the r–adelic skew–diplane
vanishes in the neighborhood | 1

2
ξ + 1

2
ξ−|| 1

2
ξ − 1

2
ξ−| < a of the origin. A computation of

the integral is made using the zeta function

ζ(s) =
∑

τ(n)n−s

of order ν and harmonic φ for the r–adelic skew–plane, which is defined in the half–plane
Rs > 1 as a sum over the positive integers n whose prime divisors are divisors of r. When
r is odd, the Euler product

ζ(s)−1 =
∏

(1− τ(p)p−s + p−2s)
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is taken over the prime divisors p of r. When r is even, the Euler product

ζ(s)−1 = (1− τ(2)2−s)
∏

(1− τ(p)p−s + p−2s)

is taken over the odd prime divisors p of r. The zeta function has no zeros and its
singularities lie in the half–plane Rs < 1 when ν is positive. The analytic weight function

W (z) = (2π)−ν−1+izΓ(ν + 1− iz)ζ(1− iz)

is represented in the upper half–plane by the integral

W (z) =

∫ ∞
0

θ(λ)tν−
1
2−izdt

under the constraint

λ+ = it

when λ− is a unit of the r–adic diline. The identity

4πF (z)/W (z) =

∫
φ(ξ)−f(ξ)| 12ξ + 1

2ξ
−|iz−ν−1| 12ξ −

1
2ξ
−|iz−ν−2 dξ

holds when z is in the upper half–plane with integration with respect to the canonical
measure for the fundamental domain for the r–adelic skew–diplane. The function

a−izF (z)

is characterized as an element of the weighted Hardy space F(W ) which satisfies the
identity ∫ +∞

−∞
|F (t)/W (t)|2dt = 1

2

∫
|f(ξ)|2dξ.

Integration on the right is with respect to the canonical measure for the fundamental
domain of the r–adelic skew–diplane. If the Hankel transform of order ν and harmonic φ for
the r–adelic skew–plane of the function f(ξ) of ξ in the r–adelic skew–diplane is a function
g(ξ) of ξ in the r–adelic skew–diplane which vanishes when | 12ξ + 1

2ξ
−|| 12ξ −

1
2ξ
−| < a,

then the Mellin transform of order ν and harmonic φ for the r–adelic skew–plane of the
function g(ξ)− of ξ in the r–adelic skew–diplane is an entire function which is the analytic
extension of F ∗(z) to the complex plane.

The Mellin transformation of order ν and character χ for the r–adelic plane supplies
information about the Sonine spaces of order ν and character χ for the r–adelic plane.
The Sonine spaces of order ν and character χ for the r–adelic plane are defined using the
analytic weight function

W (z) = (π/ρ)−
1
2
ν− 1

2
+ 1

2
izΓ( 1

2ν + 1
2 −

1
2 iz)ζ(1− iz)
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constructed from the zeta function of order ν and character χ for the r–adelic plane. The
space of parameter a contains the entire functions F (z) such that

a−izF (z)

and
a−izF ∗(z)

belong to the weighted Hardy space F(W ). A Hilbert space of entire functions which
satisfies the axioms (H1), (H2), and (H3) is obtained when a scalar product is introduced
so that multiplication by a−iz is an isometric transformation of the space into the space
F(W ). The space is a space H(E(a)) which coincides as a set with the Sonine space of
order ν and parameter a for the Euclidean plane. The space is also related to the Sonine
space of order ν and parameter b for the Euclidean plane whose parameter satisfies the
equation

r/ρ = (a/b)2.

The entire function
S(z) = (b/a)izζ(1− iz)−1

of Pólya class is determined by its zeros. The space H(E(a)) is the set of entire functions
F (z) such that S(z)F (z) belongs to the Sonine space of order ν and parameter b for
the Euclidean plane. Multiplication by S(z) is an isometric transformation of the space
H(E(a)) into the Sonine space of order ν and parameter b for the Euclidean plane. A
maximal dissipative transformation in the Sonine space of order ν and parameter b for the
Euclidean plane is defined by taking F (z) into F (z+ i) whenever F (z) and F (z+ i) belong
to the space. A maximal dissipative transformation is induced in the space H(E(a)).
The transformation takes F (z) into a G(z + i) when a sequence of elements Hn(z) of
the Sonine space for the Euclidean plane exists such that Hn(z + i) belongs to the space
for every n, such that S(z)G(z + i) is the limit of the functions Hn(z + i) in the metric
topology of the space, and such that S(z)F (z) is the limit in the metric topology of the
space of the orthogonal projections of the functions Hn(z) in the image in the space of the
space H(E(a)). The maximal dissipative transformation in the space H(E(a)) is unitarily
equivalent to a positive multiple of the adjoint of the Radon transformation of order ν and
character χ for the r–adelic plane as it acts on functions f(ξ) of ξ in the r–adelic plane
which vanish when |ξ| < a and whose Hankel transform of order ν and character χ for the
r–adelic plane vanishes when |ξ| < a.

The Mellin transformation of order ν and harmonic φ for the r–adelic skew–plane sup-
plies information about the Sonine spaces of order ν and harmonic φ for the r–adelic
skew–plane. The positive integer r is assumed to be divisible only once by the even prime
if it is even and to be divisible exactly twice by every odd prime divisor. The Sonine spaces
of order ν and harmonic φ for the r–adelic skew–plane are defined using the analytic weight
function

W (z) = (2π)−ν−1+izΓ(ν + 1− iz)ζ(1− iz)
constructed from the zeta function of order ν and harmonic φ for the r–adelic skew–plane.
The space of parameter a contains the entire functions F (z) such that

a−izF (z)
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and
a−izF ∗(z)

belong to the weighted Hardy space F(W ). A Hilbert space of entire functions which
satisfies the axioms (H1), (H2), and (H3) is obtained when a scalar product is introduced
so that multiplication by a−iz is an isometric transformation of the space into the space
F(W ). The space is a space H(E(a)) which coincides as a set with the Sonine space of
order ν and parameter a for the Euclidean skew–plane. The space is also related to the
Sonine space of order ν for the Euclidean skew–plane of parameter b which satisfies the
equation

r = (a/b)2.

The entire function
S(z) = (b/a)izζ(1− iz)−1

of Pólya class is determined by its zeros. The space H(E(a)) is the set of entire functions
F (z) such that S(z)F (z) belongs to the Sonine space of parameter b for the Euclidean skew–
plane. Multiplication by S(z) is an isometric transformation of the space H(E(a)) into the
space of parameter b for the Euclidean skew–plane. A maximal dissipative transformation
in the Sonine space of parameter b for the Euclidean skew–plane is defined by taking F (z)
into F (z + i) whenever F (z) and F (z + i) belong to the space. A maximal dissipative
transformation is induced in the space H(E(a)). The transformation takes F (z) into
G(z + i) when a sequence of elements Hn(z) of the Sonine space for the Euclidean skew–
plane exists such that Hn(z + i) belongs to the space for every n, such that S(z)G(z + i)
is the limit of the functions Hn(z + i) in the metric topology for the space, and such that
S(z)F (z) is the limit in the metric topology of the space of the orthogonal projections
of the functions Hn(z) in the image in the space of the image of the space H(E(a)).
The maximal dissipative transformation in the space H(E(a)) is unitarily equivalent to a
positive multiple of the adjoint of the Radon transformation of order ν and character χ
for the r–adelic skew–plane as it acts on functions f(ξ) of ξ in the r–adelic skew–diplane
which vanish when | 12ξ + 1

2ξ
−|| 12ξ − iξ−| < a and whose Hankel transform of order ν and

character χ for the r–adelic skew–plane vanishes when | 12ξ + 1
2ξ
−|| 12ξ −

1
2ξ
−| < a.

§6. The Radon transformation for locally compact rings

The signature for the adic line is the homomorphism ξ into sgn(ξ) of the group of
invertible elements of the adic line into the real numbers of absolute value one which has
value minus one on elements whose adic modulus is a prime. The canonical measure for
the adic line is the Cartesian product of the canonical measures for the p–adic lines taken
over the primes p. The Laplace kernel for the adic plane is a function σ(λ) of λ in the adic
diline which vanishes when the p–adic component of pλ is not integral for some prime p.
When the p–adic modulus of pλ is integral for every prime p, σ(λ) is equal to the product∏

(1− p)−1

taken over the primes p such that the p–adic component of λ is not integral.
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The canonical measure for the adic diline is the Cartesian product of the canonical
measures on the p–adic dilines. The Laplace kernel for the adic skew–plane is a function
σ(λ) of λ in the adic diline which vanishes when the p–adic component of pλ∗λ is not
integral for some prime p. When the p–adic component of pλ∗λ is integral for every prime
p, σ(λ) is equal to the product ∏

(1− p)−1

taken over the primes p such that the p–adic component of λ is not integral. The function
σ(λ) is extended to the adic skew–diplane and so as to depend only on the adic modulus
of λ∗λ so as to vanish when the adic modulus of λ∗λ is not a rational number.

The Hankel transformation of character χ for the adic plane is a restriction of the
Hankel transformation of character χ for the adic diplane. The domain of the Hankel
transformation of character χ for the adic diplane is the space of functions f(ξ) of ξ in the
adic diplane which vanish when the p–adic component of ξ is not a unit for some prime
divisor p of ρ, which satisfy the identity

f(ωξ) = χ(ω)f(ξ)

for every unit ω of the adic diplane, and which are square integrable with respect to the
canonical measure for the adic diplane. The canonical measure for the adic diplane is a
nonnegative measure on the Borel subsets of the adic diplane which is characterized within
a constant factor by invariance properties. Multiplication by ω multiplies the canonical
measure by the square of the adic modulus of ω for every element ω of the adic diplane.
The canonical measure is normalized so that the measure of the set of units is equal to
one. The domain of the Hankel transformation of character χ for the adic plane is the
set of functions f(ξ) of ξ in the adic diplane which belong to the domain of the Hankel
transformation of character χ for the adic diplane and which vanish when the adic modulus
of ξ is not a rational number. The range of the Hankel transformation of character χ for
the adic diplane is the domain of the Hankel transformation of character χ∗ for the adic
diplane. The Hankel transformation of character χ for the adic diplane takes a function
f(ξ) of ξ in the adic diplane into a function g(ξ) of ξ in the adic diplane when the identity∫

χ∗(ξ)−g(ξ)σ(λξ−ξ)dξ = sgn(λ)|λ|−1ε(χ)

∫
χ(ξ)−f(ξ)σ(λ−1ξ−ξ)dξ

holds for every invertible element λ of the adic line whose p–adic component is a unit or
every prime divisor p of ρ. Integration is with respect to the canonical measure for the
adic diplane. The identity ∫

|f(ξ)|2dξ =

∫
|g(ξ)|2dξ

holds with integration with respect to the canonical measure for the adic diplane. If f(ξ)
vanishes when the adic modulus of ξ is not a rational number, then g(ξ) vanishes when
the adic modulus of ξ is not a rational number. The function f(ξ) of ξ in the adic diplane
is the Hankel transform of character χ∗ for the adic diplane of the function g(ξ) of ξ in
the adic diplane.
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The Hankel transformation for the adic skew–plane is a restriction of the Hankel trans-
formation for the adic skew–diplane. The domain of the Hankel transformation for the
adic skew–diplane is the space of functions f(ξ) of ξ in the adic skew–diplane which satisfy
the identity

f( 1
2ω(ξ + ξ−) + 1

2ω
−1(ξ − ξ−)) = |ω|f(ξ)

for every invertible element ω of the adic diline, which satisfy the identity

f(ω−ξω) = f(ξ)

for every unit ω of the adic skew–diplane, and which are square integrable with respect to
the canonical measure for the adic skew–diplane. The fundamental domain for the adic
skew–diplane is the set of elements ξ of the adic skew–diplane such that 1

2(ξ+ξ−) is a unit
of the adic diline. The canonical measure for the fundamental domain of the adic skew–
diplane is a nonnegative measure on the Borel subsets of the fundamental domain which
is characterized within a constant factor by invariance properties. Measure preserving
transformations are defined by taking ξ into ωξ and ξ into ξω for every unit ω of the adic
skew–diplane. The transformation which takes ξ into

1
2 (ξ + ξ−) + 1

2ω
−(ξ − ξ−)ω

multiplies the canonical measure by the fourth power of the adic modulus of ω−ω for every
element ω of the adic skew–diplane. The measure is normalized so that the set of units
has measure one. The domain of the Hankel transformation for the adic skew–plane is the
space of functions f(ξ) of ξ in the adic skew–diplane which belong to the domain of the
Hankel transformation for the adic skew–diplane and which vanish when the adic modulus
of ξ−ξ is not a rational number. The range of the Hankel transformation for the adic
skew–diplane is the domain of the Hankel transformation for the adic skew–diplane. The
transformation takes a function f(ξ) of ξ in the adic skew–diplane into a function g(ξ) of
ξ in the adic skew–diplane when the identity∫

g(ξ)| 1
2
ξ − 1

2
ξ−|−1σ(λ( 1

2
ξ + 1

2
ξ−)( 1

2
ξ − 1

2
ξ−))dξ

= sgn(λ∗λ)|λ|−2

∫
f(ξ)| 1

2
ξ − 1

2
ξ−|−1σ(λ−1( 1

2
ξ + 1

2
ξ−)( 1

2
ξ − 1

2
ξ−))dξ

holds for every invertible element λ of the adic diline with integration with respect to the
canonical measure for the fundamental domain of the adic skew–diplane. The identity∫

|f(ξ)|2dξ =

∫
|g(ξ)|2dξ

holds with integration with respect to the canonical measure for the fundamental domain.
If the function f(ξ) of ξ in the adic skew–diplane vanishes when the adic modulus of ξ−ξ
is not a rational number, then the function g(ξ) of ξ in the adic skew–diplane vanishes
when the adic modulus of ξ−ξ is not a rational number. The function f(ξ) of ξ in the adic
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skew–diplane is the Hankel transform for the adic skew–diplane of the function g(ξ) of ξ
in the adic skew–diplane.

The Laplace transformation of character χ for the adic plane is a restriction of the
Laplace transformation of character χ for the adic diplane. The domain of the Laplace
transformation of character χ for the adic diplane is the space of functions f(ξ) of ξ in the
adic diplane which vanish when the p–adic component of ξ is not a unit for some prime
divisor p of ρ, which satisfy the identity

f(ωξ) = χ(ω)f(ξ)

for every unit ω of the adic diplane, and which are square integrable with respect to the
canonical measure for the adic diplane. The domain of the Laplace transformation of
character χ for the adic plane is the space of functions f(ξ) of ξ in the adic diplane which
belong to the domain of the Laplace transformation of character χ for the adic diplane and
which vanish when the adic modulus of ξ is not a rational number. The Laplace transform
of character χ for the adic diplane of the function f(ξ) of ξ in the adic diplane is the
function g(λ) of λ in the adic line defined by the integral

g(λ) =

∫
χ(ξ)−f(ξ)σ(λξ−ξ)dξ

with respect to the canonical measure for the adic diplane. The identity∫
|g(λ)|2dλ =

∫
|f(ξ)|2dξ

holds with integration on the left with respect to the canonical measure for the adic line and
with integration on the right with respect to the canonical measure for the adic diplane. A
function g(λ) of λ in the adic line, which is square integrable with respect to the canonical
measure for the adic line, is a Laplace transform of character χ for the adic diplane if, and
only if, it satisfies the identity

g(ωλ) = g(λ)

for every unit ω of the adic line, vanishes when the p–adic component of pλ is not integral
for some prime divisor p of ρ, satisfies the identity

(1− p)f(λ) = f(ω−1λ)

when the p–adic component of pλ is a unit for some prime divisor p of ρ and ω is an
element of the adic line whose adic modulus is p, and satisfies the identity

g(λ) = g(ω−1λ)

when the p–adic component of λ is integral for some prime divisor p of ρ and ω is an
element of the adic line whose adic modulus is p. A function g(λ) of λ in the adic line is a
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Laplace transform of character χ for the adic plane if, and only if, it is a Laplace transform
of character χ for the adic diplane which satisfies the identity

(1− p)g(λ) = g(ω−1λ)− pg(ωλ)

when the p–adic modulus of λ is an odd power of p for some prime p and ω is an element
of the adic line whose adic modulus is p.

The Laplace transformation for the adic skew–plane is a restriction of the Laplace
transformation for the adic skew–diplane. The domain of the Laplace transformation for
the adic skew–diplane is the space of functions f(ξ) of ξ in the adic skew–diplane which
satisfy the identity

f( 1
2ω(ξ + ξ−) + 1

2ω
−1(ξ − ξ−)) = |ω|f(ξ)

for every invertible element ω of the adic diline, which satisfy the identity

f(ω−ξω) = f(ξ)

for every unit ω of the adic skew–diplane, and which are square integrable with respect to
the canonical measure for the fundamental domain of the adic skew–diplane. The domain
of the Laplace transformation for the adic skew–plane is the set of functions f(ξ) of ξ
in the adic skew–diplane which belong to the domain of the Laplace transformation for
the adic skew–diplane and which vanish when the adic modulus of ξ−ξ is not a rational
number. The Laplace transform for the adic skew–diplane of the function f(ξ) of ξ in
the adic skew–diplane is the function g(λ) of λ in the adic diline which is defined by the
integral

g(λ) =

∫
f(ξ)| 12ξ −

1
2ξ
−|−1σ(λ( 1

2ξ + 1
2ξ
−)( 1

2ξ −
1
2ξ
−))dξ

with respect to the canonical measure for the fundamental domain of the adic skew–diplane.
The identity ∫

|g(λ)|2dλ =

∫
|f(ξ)|2dξ

holds with integration on the left with respect to the canonical measure for the adic diline
and with integration on the right with respect to the canonical measure for the fundamental
domain of the adic skew–diplane. A function g(λ) of λ in the adic diline is a Laplace
transform for the adic skew–diplane if, and only if, it satisfies the identity

g(ωλ) = g(λ)

for every unit ω of the adic diline and is square integrable with respect to the canonical
measure for the adic diline. A function g(λ) of λ in the adic diline is a Laplace transform
for the adic skew–plane if, and only if, it is a Laplace transform for the adic skew–diplane
which satisfies the identity

(1− p)f(λ) = f(ω−1λ)− pf(ωλ)
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when the p–adic modulus of λ∗λ is an odd power of p for some prime p and ω is an element
of the adic diline for which the adic modulus of ω∗ω is p.

The Radon transformation of character χ for the adic diplane is a nonnegative self–
adjoint transformation in the space of functions f(ξ) of ξ in the adic diplane which vanish
when the p–adic component of ξ is not a unit for some prime p, which satisfy the identity

f(ωξ) = χ(ω)f(ξ)

for every unit ω of the adic diplane, and which are square integrable with respect to the
canonical measure for the adic diplane. The transformation takes a function f(ξ) of ξ in
the adic diplane into a function g(ξ) of ξ in the adic diplane when the identity

g(ξ) =

∫
f(ξ + η)dη

holds formally with integration with respect to Haar measure for the space of elements
η of the adic plane whose p–adic component vanishes for every prime divisor p of ρ and
which satisfy the identity

η−ξ + ξ−η = 0.

Haar measure is normalized so that the set of integral elements has measure one. The
integral is accepted as the definition when

f(ξ) = χ(ξ)σ(λξ−ξ)

for an invertible element λ of the adic line whose p–adic component is a unit for every
prime divisor p of ρ, in which case

g(ξ) = |λ|− 1
2 f(ξ).

The formal integral is otherwise interpreted as the identity∫
χ(ξ)−g(ξ)σ(λξ−ξ)dξ = |λ|− 1

2

∫
χ(ξ)−f(ξ)σ(λξ−ξ)dξ

for every invertible element λ of the adic diline whose p–adic component is a unit for every
prime divisor p of ρ. Integration is with respect to the canonical measure for the adic
diplane.

The Radon transformation of character χ for the adic plane is a nonnegative self–adjoint
transformation in the space of functions f(ξ) of ξ in the adic diplane which vanish when
the p–adic component of ξ is not a unit for some prime divisor p of ρ or when the adic
modulus of ξ is not a rational number, which satisfy the identity

f(ωξ) = χ(ω)f(ξ)

for every unit ω of the adic diplane, and which are square integrable with respect to the
canonical measure for the adic diplane. The transformation takes a function f(ξ) of ξ in the
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adic diplane into a function g(ξ) of ξ in the adic diplane when the Radon transformation
for the adic diplane takes a function fn(ξ) of ξ in the adic diplane into a function gn(ξ) of
ξ in the adic diplane for every positive integer n, such that the function g(ξ) is the limit
of the functions gn(ξ) in the metric topology of the space of square integrable functions
with respect to the canonical measure, and such that the function f(ξ) is the limit in the
same topology of the orthogonal projections of the functions fn(ξ) in the space of functions
which vanish when the adic modulus of ξ is not a rational number.

The Radon transformation for the adic skew–diplane is a nonnegative self–adjoint trans-
formation in the space of functions f(ξ) of ξ in the adic skew–diplane which satisfy the
identity

f( 1
2ω(ξ + ξ−) + 1

2ω
−1(ξ − ξ−)) = |ω|f(ξ)

for every invertible element ω of the adic diline, which satisfy the identity

f(ω−ξω) = f(ξ)

for every unit ω of the adic skew–diplane, and which are square integrable with respect to
the canonical measure for the fundamental domain of the adic skew–diplane. The function

| 12ξ −
1
2ξ
−|−1σ(λ( 1

2ξ + 1
2ξ
−)( 1

2ξ −
1
2ξ
−))

of ξ in the adic skew–diplane is an eigenfunction of the Radon transformation for the adic
skew–diplane for the eigenvalue |λ|−1 when λ is an invertible element of the adic diline.
The transformation takes a function f(ξ) of ξ in the adic skew–diplane into a function g(ξ)
of ξ in the adic skew–diplane when the identity∫

g(ξ)| 12ξ −
1
2ξ
−|−1σ(λ( 1

2ξ + 1
2ξ
−)( 1

2ξ −
1
2ξ
−))dξ

= |λ|−1

∫
f(ξ)| 1

2
ξ − 1

2
ξ−|−1σ(λ( 1

2
ξ + 1

2
ξ−)( 1

2
ξ − 1

2
ξ−))dξ

holds for every invertible element λ of the adic diline. Integration is with respect to the
canonical measure for the fundamental domain of the adic skew–diplane.

The Radon transformation for the adic skew–plane is a nonnegative self–adjoint trans-
formation in the space of functions f(ξ) of ξ in the adic skew–diplane which satisfy the
identity

f( 1
2ω(ξ + ξ−) + 1

2ω
−1(ξ − ξ−)) = |ω|f(ξ)

for every invertible element ω of the adic diline, which satisfy the identity

f(ω−ξω) = f(ξ)

for every unit ω of the adic skew–diplane, which vanish when the adic modulus of ξ−ξ is not
a rational number, and which are square integrable with respect to the canonical measure
for the fundamental domain of the adic skew–diplane. The transformation takes a function
f(ξ) of ξ in the adic skew–diplane into a function g(ξ) of ξ in the adic skew–diplane when
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the Radon transformation for the adic skew–diplane takes a function fn(ξ) of ξ in the
adic skew–diplane into a function gn(ξ) in the adic skew–diplane for every positive integer
n, such that the function g(ξ) is the limit of the functions gn(ξ) in the metric topology
of the space of square integrable functions with respect to the canonical measure for the
fundamental domain of the adic skew–diplane, and such that the function f(ξ) is the limit
in the same topology of the orthogonal projections of the functions fn(ξ) in the space of
functions which vanish when the adic modulus of ξ−ξ is not a rational number.

A property of the range of the Laplace transformation of character χ for the adic plane
is required to know that a nonnegative self–adjoint transformation is obtained as Radon
transformation of character χ for the adic plane. The range of the Laplace transformation
of character χ for the adic diplane is the space of functions f(λ) of λ in the adic line which
are square integrable with respect to the canonical measure for the adic line, which satisfy
the identity

f(ωλ) = f(λ)

for every unit ω of the adic line, which vanish when the p–adic component of pλ is not
integral for some prime divisor p of ρ, which satisfy the identity

(1− p)f(λ) = f(ω−1λ)

when the p–adic component of pλ is a unit for some prime divisor p of ρ with ω an element
of the adic line whose adic modulus is p, and which satisfy the identity

f(λ) = f(ω−1λ)

when the p–adic component of λ is integral for some prime divisor p of ρ with ω an element
of the adic line whose adic modulus is p. A nonnegative self–adjoint transformation in the
range of the Laplace transformation of character χ for the adic diplane is defined by taking
a function f(λ) of λ in the adic line into a function g(λ) of λ in the adic line if the identity

g(λ) = |λ|− 1
2 f(λ)

holds when the p–adic component of λ is a unit for every prime divisor p of ρ. The range of
the Laplace transformation of character χ for the adic plane is the space of functions f(λ)
of λ in the adic line which belong to the range of the Laplace transformation of character
χ for the adic diplane and which satisfy the identity

(1− p)f(λ) = f(ω−1λ)− pf(ωλ)

when the p–adic modulus of λ is an odd power of p for some prime divisor p of r and ω is an
element of the adic line whose adic modulus is p. The closure of the set of functions f(λ)
of λ in the adic line, which belong to the range of the Laplace transformation of character
χ for the adic diplane, such that a function g(λ) of λ in the adic line, which belongs to the
range of the Laplace transformation of character χ for the adic plane, exists such that the
identity

g(λ) = |λ|− 1
2 f(λ)
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holds when the p–adic component of λ is a unit for every prime divisor p of ρ, is the set of
functions f(λ) of λ in the adic line which belong to the range of the Laplace transformation
of character χ for the adic diplane and which satisfy the identity

(p
1
2 − p− 1

2 )f(λ) = f(ωλ)− f(ω−1λ)

when the p–adic component of λ is a unit for every prime divisor p of ρ and the p–adic
modulus of λ is an odd power of p for some prime divisor p of r, which is not a divisor
of ρ, with ω an element of the adic line whose adic modulus is p. It will be shown that a
dense set of elements of the range of the Laplace transformation of character χ for the adic
plane are orthogonal projections of such functions f(λ) of λ in the adic line. It is sufficient
to show that no nonzero element of the Laplace transformation of character χ for the adic
plane is orthogonal to all such functions f(λ) of λ in the adic line. A function g(λ) of λ in
the adic line, which belongs to the range of the Laplace transformation of character χ for
the adic diplane and which is orthogonal to all such functions f(λ) of λ in the adic line,
satisfies the identity

(p
1
2 − p− 1

2 )g(λ) = p−1g(ω−1λ)− pg(ωλ)

when the p–adic component of λ is a unit for every prime divisor p of ρ and the p–adic
modulus of λ is an odd power of p for some prime p, which is not a divisor of ρ, with ω
an element of the adic line whose adic modulus is p. The function g(λ) of λ in the adic
line vanishes identically when the function is in the range of the Laplace transformation
of character χ for the adic plane.

A property of the range of the Laplace transformation for the adic skew–plane is re-
quired to know that a nonnegative self–adjoint transformation is obtained as the Radon
transformation for the adic skew–plane. The range of the Laplace transformation for the
adic skew–diplane is the space of functions f(λ) of λ in the adic diline which satisfy the
identity

f(ωλ) = f(λ)

for every unit ω of the adic diline and which are square integrable with respect to the
canonical measure for the adic diline. A nonnegative self–adjoint transformation in the
range of the Laplace transformation for the adic skew-diplane is defined by taking a function
f(λ) of λ in the adic diline into the function |λ|−1f(λ) of λ in the adic diline. The range
of the Laplace transformation for the adic skew–plane is the space of functions f(λ) of λ
in the adic diline which belong to the range of the Laplace transformation for the adic
skew–diplane and which satisfy the identity

(1− p)f(λ) = f(ω−1λ)− pf(ωλ)

when the p–adic modulus of λ∗λ is an odd power of p for some prime p and ω is an element
of the adic diline such that the adic modulus of ω∗ω is p. The closure of the set of functions
f(λ) of λ in the adic diline, which belong to the range of the Laplace transformation for
the adic skew–diplane, such that the function |λ|−1f(λ) of λ in the adic diline belongs to
the range of the Laplace transformation for the adic skew–plane, is the set of functions
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f(λ) of λ in the adic diline which belong to the range of the Laplace transformation for
the adic skew–diplane and which satisfy the identity

(p
1
2 − p− 1

2 )f(λ) = f(ωλ)− f(ω−1λ)

when the p–adic modulus of λ∗λ is an odd power of p for some prime p and ω is an
element of the adic diline such that the adic modulus of ω∗ω is p. It will be shown that a
dense set of elements of the range of the Laplace transformation for the adic skew–plane
are orthogonal projections of such functions f(λ) of λ in the adic diline. It is sufficient
to show that no nonzero element of the range of the Laplace transformation for the adic
skew–plane is orthogonal to all such functions f(λ) of λ in the adic diline. A function
g(λ) of λ in the adic diline, which belongs to the range of the Laplace transformation for
the adic skew–diplane and which is orthogonal to all such functions f(λ) of λ in the adic
diline, satisfies the identity

(p
1
2 − p− 1

2 )g(λ) = p−1g(ω−1λ)− pg(ωλ)

when the p–adic modulus of λ∗λ is an odd power of p for some prime p and ω is an element
of the adic diline such that the adic modulus of ω∗ω is p. The function g(λ) of λ in the adic
diline vanishes identically when the function is in the range of the Laplace transformation
for the adic skew–plane.

§7. The functional identity for Riemann zeta functions

The adelic upper half–plane is the set of elements of the adelic plane whose Euclidean
component belongs to the upper half–plane and whose adic component is an invertible
element of the adic line. An element of the adelic upper half–plane, whose Euclidean
component is τ+ + iy for a real number τ+ and a positive number y and whose adic
component is τ−, is written τ + iy with τ the element of the adelic line whose Euclidean
component is τ+ and whose adic component is τ−. A character of order ν for the adelic
diplane is a function χ(ξ) of ξ in the adelic diplane which is a product

χ(ξ) = χ(ξ+)χ(ξ−)

of a character of order ν for the Euclidean diplane and a character modulo ρ for the adic
diplane which has the same parity as ν. The canonical measure for the adelic line is the
Cartesian product of Haar measure for the Euclidean line and the canonical measure for
the adic line. The fundamental domain for the adelic line is the set of elements of the
adelic line whose adic modulus is a positive integer not divisible by the square of a prime.
The canonical measure for the fundamental domain is the restriction to the Borel subsets
of the fundamental domain of the canonical measure for the adelic line. The theta function
of order ν and character χ for the adelic plane is a function θ(λ) of λ in the adelic upper
half–plane which is defined as a sum

2θ(λ) =
∑

χ(ω−) exp(πiω2
+λ+/ρ)σ(ω2

−λ−)
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over the nonzero principal elements ω of the adelic line whose p–adic component is a unit
for every prime divisor p of ρ. The theta function of order ν and character χ∗ for the adelic
upper half–plane is the function

θ∗(λ) = θ(−λ−)−

of λ in the upper half–plane.

The adelic upper half–diplane is the set of elements of the adelic diplane whose Euclidean
component belongs to the upper half–plane and whose adic component is an invertible
element of the adic diline. An element of the adelic upper half–plane, whose Euclidean
component is τ+ + iy for a real number τ+ and a positive number y and whose adic
component is τ−, is written τ + iy with τ an element of the adelic diline whose Euclidean
component is τ+ and whose adic component is τ−. A harmonic function of order ν for the
adelic skew–diplane is a function φ(ξ) of ξ in the adelic skew–diplane which depends only
on the Euclidean component of ξ and is a harmonic function of order ν for the Euclidean
skew–diplane as a function of the Euclidean component of ξ. The canonical measure for
the adelic diline is the Cartesian product of Haar measure for the Euclidean diline and
the canonical measure for the adic diline. The fundamental domain for the adelic diline is
the set of elements τ of the adelic diline such that the adic modulus of τ∗τ is a positive
integer which is not divisible by the square of a prime. The canonical measure for the
fundamental domain is the restriction to the Borel subsets of the canonical domain of the
canonical measure for the adelic diline. The theta function of order ν and character χ
for the adelic skew–line is a function θ(λ) of λ in the adelic upper half–diplane which is
defined as a sum

2θ(λ) =
∑

ων+τ(ω+) exp(2πiω+λ+)σ(ω−λ−)

over the nonzero principal elements ω of the adelic line when λ belongs to the fundamental
domain for the adelic upper half–diplane. The theta function of order ν and character χ∗

for the adelic upper half–diplane is the function

θ∗(λ) = θ(−λ−)−

of λ in the adelic upper half–diplane.

The Hankel transformation of order ν and character χ for the adelic plane is a restriction
of the Hankel transformation of order ν and character χ for the adelic diplane. The
canonical measure for the adelic diplane is the Cartesian product of Haar measure for the
Euclidean diplane and the canonical measure for the adic diplane. The fundamental domain
for the adelic diplane is the set of elements of the adelic diplane whose adic component is
a unit. The canonical measure for the fundamental domain is the restriction to the Borel
subsets of the fundamental domain of the canonical measure for the adelic diplane. The
domain of the Hankel transformation of order ν and character χ for the adelic diplane
is the space of functions f(ξ) of ξ in the adelic diplane which vanish when the p–adic
component of ξ is not a unit for some prime divisor p of ρ, which satisfy the identity

f(ωξ) = χ(ω−)f(ξ)
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for every unit ω of the adelic diplane, which satisfy the identity

f(ξ) = f(ωξ)

for every nonzero principal element ω of the adelic line whose p–adic component is a unit
for every prime divisor p of ρ, and which are square integrable with respect to the canonical
measure for the fundamental domain. The range of the Hankel transformation of order
ν and character χ for the r–adelic diplane is the domain of the Hankel transformation of
order ν and character χ∗ for the adelic diplane. The domain of the Hankel transformation
of order ν and character χ for the adelic plane is the space of functions f(ξ) of ξ in the
adelic diplane which belong to the domain of the Hankel transformation of order ν and
character χ for the adelic diplane and which vanish when the adic modulus of ξ is not
a rational number. The Hankel transformation of order ν and character χ for the adelic
diplane takes a function f(ξ) of ξ in the adelic diplane into a function g(ξ) of ξ in the
adelic diplane when the identity∫

χ∗(ξ)−g(ξ)θ∗(λξ−ξ)dξ = (i/λ+)1+ν sgn(λ−)|λ|−1
− ε(χ)

∫
χ(ξ−)−f(ξ)θ(−λ−1ξ−ξ)dξ

holds for λ in the adelic upper half–plane with integration with respect to the canonical
measure for the fundamental domain. The identity∫

|f(ξ)|2dξ =

∫
|g(ξ)|2dξ

holds with integration with respect to the canonical measure for the fundamental domain.
If the function f(ξ) of ξ in the adelic diplane vanishes when the adic modulus of ξ is not a
rational number, then the function g(ξ) of ξ in the adelic diplane vanishes when the adic
modulus of ξ is not a rational number. The function f(ξ) of ξ in the adelic diplane is the
Hankel transform of order ν and character χ∗ for the adelic diplane of the function g(ξ) of
ξ in the adelic diplane.

The Hankel transformation of order ν and harmonic φ for the adelic skew–plane is a
restriction of the Hankel transformation of order ν and harmonic φ for the adelic skew–
diplane. The domain of the Hankel transformation of order ν and harmonic φ for the adelic
skew–diplane is the space of functions f(ξ) of ξ in the adelic skew–diplane which satisfy
the identity

f( 1
2ω(ξ + ξ−) + 1

2ω
−1(ξ − ξ−)) = |ω|f(ξ)

for every invertible element ω of the adelic diline, which satisfy the identity

φ(ξ)f(ω−ξω) = φ(ω−ξω)f(ξ)

for every unit ω of the adelic skew–diplane, which satisfy the identity

f(ξ) = f( 1
2 (ξ + ξ−) + 1

2ω
−(ξ − ξ−)ω)

for every nonzero principal element ω of the adelic skew–plane, and which are square
integrable with respect to the canonical measure for the fundamental domain of the adelic
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skew–diplane. The fundamental domain of the adelic skew–diplane is the set of elements ξ
of the adelic skew–diplane such that 1

2 (ξ + ξ−) is a unit of the adelic diline and such that

the square of the adic modulus of ( 1
2
ξ− 1

2
ξ−)−( 1

2
ξ− 1

2
ξ−) is a positive integer which is not

divisible by the square of a prime. The canonical measure for the fundamental domain of
the adelic skew–diplane is the restriction to the Borel subsets of the fundamental domain
of the Cartesian product of the canonical measure for the fundamental domain of the
Euclidean skew–diplane and the canonical measure for the fundamental domain of the
adic skew–diplane. The domain of the Hankel transformation of order ν and harmonic
φ for the adelic skew–plane is the space of functions f(ξ) of ξ in the adelic skew–diplane
which belong to the domain of the Hankel transformation of order ν and harmonic φ for
the adelic skew–diplane and which vanish when the adic modulus of ξ−ξ is not a rational
number. The range of the Hankel transformation of order ν and harmonic φ for the adelic
skew–diplane is the domain of the Hankel transformation of order ν and harmonic φ∗ for
the adelic skew–diplane. The Hankel transformation of order ν and harmonic φ for the
adelic skew–diplane takes a function f(ξ) of ξ in the adelic skew–diplane into a function
g(ξ) of ξ in the adelic skew–diplane when the identity∫

φ∗(ξ)−g(ξ)| 1
2
ξ − 1

2
ξ−|−1θ∗(λ| 1

2
ξ + 1

2
ξ−|| 1

2
ξ − 1

2
ξ−|dξ

= (i/λ+)2+2ν sgn(λ∗λ)|λ|−2
−

∫
φ(ξ)−f(ξ)| 12ξ −

1
2ξ
−|−1θ(−λ−1| 12ξ + 1

2ξ
−|| 12ξ −

1
2ξ
−|)dξ

holds when λ is in the adelic upper half–plane with integration with respect to the canonical
measure for the fundamental domain of the adelic skew–diplane. The notation

| 12ξ + 1
2ξ
−|| 12ξ −

1
2ξ
−|

is used in the argument of the theta function for an element of the adelic diline with
nonnegative Euclidean component which has the same Euclidean and adic modulus as

( 1
2
ξ + 1

2
ξ−)( 1

2
ξ − 1

2
ξ−).

The identity ∫
|f(ξ)|2dξ =

∫
|g(ξ)|2dξ

holds with integration with respect to the canonical measure for the fundamental domain.
If the function f(ξ) of ξ in the adelic skew–diplane vanishes when the adic modulus of ξ−ξ
is not a rational number, then the function g(ξ) of ξ in the adelic skew–diplane vanishes
when the adic modulus of ξ−ξ is not a rational number. The function f(ξ) of ξ in the
adelic skew–diplane is the Hankel transform of order ν and harmonic φ∗ of the function
g(ξ) of ξ in the adelic skew–diplane.

The nonzero principal elements of the adelic line, whose p–adic component is a unit for
every prime divisor p of ρ, are applied in an isometric summation for the adelic diplane.
If a function f(ξ) of ξ in the adelic diplane satisfies the identity

f(ωξ) = χ(ω)f(ξ)
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for every unit ω of the adelic diplane, vanishes outside of the fundamental domain, and
is square integrable with respect to the canonical measure for the adelic diplane, then a
function g(ξ) of ξ in the adelic diplane, which vanishes when the p–adic component of ξ is
not a unit for some prime divisor p of ρ, which satisfies the identity

g(ωξ) = χ(ω)g(ξ)

for every unit ω of the adelic diplane, and which satisfies the identity

g(ξ) = g(ωξ)

for every nonzero principal element ω of the adelic line whose p–adic component is a unit
for every prime divisor p of ρ, is defined by the sum

g(ξ) =
∑

f(ωξ)

over the nonzero principal elements ω of the adelic line whose p–adic component is a unit
for every prime divisor p of ρ. The identity∫

|f(ξ)|2dξ =

∫
|g(ξ)|2dξ

holds with integration with respect to the canonical measure for the fundamental domain
of the adelic diplane. If the function f(ξ) of ξ in the adelic diplane vanishes when the adic
modulus of ξ is not rational, then the function g(ξ) of ξ in the adelic diplane vanishes when
the adic modulus of ξ is not rational. If a function h(ξ) of ξ in the adelic diplane vanishes
when the p–adic component of ξ is not a unit for some prime divisor p of ρ, satisfies the
identity

h(ωξ) = χ(ω)h(ξ)

for every unit ω of the adelic diplane satisfies the identity

h(ξ) = h(ωξ)

for every nonzero principal element ω of the adelic line whose p–adic component is a unit for
every prime divisor p of ρ, and is square integrable with respect to the canonical measure
for the fundamental domain, then h(ξ) is equal to g(ξ) for a function f(ξ) of ξ in the adelic
diplane which is equal to h(ξ) when ξ is in the fundamental domain.

The nonzero principal elements of the adelic skew–plane are applied in an isometric
summation for the adelic skew–plane. If a function f(ξ) of ξ in the adelic skew–plane
satisfies the identity

f( 1
2ω(ξ + ξ−) + 1

2ω
−1(ξ − ξ−)) = |ω|f(ξ)

for every invertible element ω of the adelic diline, satisfies the identity

φ(ξ)f(ω−ξω) = φ(ω−ξω)f(ξ)
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for every unit ω of the adelic skew–plane, vanishes when 1
2
(ξ + ξ−) is a unit of the adelic

diline but ξ does not belong to the fundamental domain for the adelic skew–diplane, and
is square integrable with respect to the canonical measure for the fundamental domain,
then a function g(ξ) of ξ in the adelic skew–diplane which satisfies the identity

g( 1
2
ω(ξ + ξ−) + 1

2
ω−1(ξ − ξ−)) = |ω|g(ξ)

for every invertible element ω of the adelic diline, which satisfies the identity

φ(ξ)g(ω−ξω) = φ(ω−ξω)g(ξ)

for every unit ω of the adelic skew–diplane, and which satisfies the identity

g(ξ) = g( 1
2
(ξ + ξ−) + 1

2
ω−(ξ − ξ−)ω)

for every nonzero principal element ω of the adelic skew–plane, is defined by the sum

24g(ξ) =
∑

f( 1
2 (ξ + ξ−) + 1

2ω
−(ξ − ξ−)ω)

for every nonzero principal element ω of the adelic skew–plane, is defined by the sum

24g(ξ) =
∑

f( 1
2
(ξ + ξ−) + 1

2
ω−(ξ − ξ−)ω)

over the nonzero principal elements ω of the adelic skew–plane. The identity∫
|f(ξ)|2dξ =

∫
|g(ξ)|2dξ

holds with integration with respect to the canonical measure for the fundamental domain
of the adelic skew–diplane. If a function f(ξ) of ξ in the adelic skew–diplane vanishes
when the adic modulus of ξ−ξ is not a rational number, then the function g(ξ) of ξ in the
adelic skew–diplane vanishes when the adic modulus of ξ−ξ is not a rational number. The
identity

2g(ξ) =
∑

τ(ω+)f( 1
2
(ξ + ξ−) + 1

2
ω(ξ − ξ−))

holds with summation over the nonzero principal elements ω of the adelic line. If a function
h(ξ) of ξ in the adelic skew–plane satisfies the identity

h( 1
2ω(ξ + ξ−) + 1

2ω
−1(ξ − ξ−)) = |ω|h(ξ)

for every invertible element ω of the adelic diline, satisfies the identity

φ(ξ)h(ω−ξω) = φ(ω−ξω)h(ξ)

for every unit ω of the adelic skew–diplane, satisfies the identity

h(ξ) = h( 1
2 (ξ + ξ−) + 1

2ω
−(ξ − ξ−)ω)
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for every nonzero principal element ω of the adelic skew–plane, and is square integrable
with respect to the canonical measure for the fundamental domain of the adelic skew–
diplane, then h(ξ) is equal to g(ξ) for a function f(ξ) of ξ in the adelic skew–diplane which
is equal to h(ξ) when ξ is in the fundamental domain.

The Laplace transformation of order ν and character χ for the adelic plane is a restriction
of the Laplace transformation of order ν and character χ for the adelic diplane. The domain
of the Laplace transformation of order ν and character χ for the adelic diplane is the space
of functions f(ξ) of ξ in the adelic diplane which vanish when the p–adic component of ξ
is not a unit for some prime divisor p of ρ, which satisfy the identity

f(ωξ) = χ(ω)f(ξ)

for every unit ω of the adelic diplane, which satisfy the identity

f(ξ) = f(ωξ)

for every nonzero principal element ω of the adelic line whose p–adic component is a unit for
every prime divisor p of ρ, and which are square integrable with respect to the canonical
measure for the fundamental domain of the adelic diplane. The domain of the Laplace
transformation of order ν and character χ for the adelic plane is the space of functions
f(ξ) of ξ in the adelic diplane which belong to the domain of the Laplace transformation
of order ν and character χ for the adelic diplane and which vanish when the adic modulus
of ξ is not a rational number. The Laplace transform of order ν and character χ for the
adelic diplane of the function f(ξ) of ξ in the adelic diplane is a function g(λ) of λ in the
adelic upper half–plane which is defined by the integral

2πg(λ) =

∫
χ(ξ)−f(ξ)θ(λξ−ξ)dξ

with respect to the canonical measure for the fundamental domain of the adelic diplane.
The function g(λ) of λ in the adelic upper half–plane is an analytic function of the Euclidean
component of λ when the adic component of λ is held fixed. The identity

g(ωλ) = g(λ)

holds for every unit ω of the adelic line whose Euclidean component is the unit of the
Euclidean line. The function vanishes when the p–adic component of pλ is not integral for
some prime divisor p of ρ. The identity

(1− p)g(λ) = g(ω−1λ)

holds when the p–adic component of pλ is a unit for some prime divisor p of ρ and ω is
an element of the adelic line whose Euclidean component is the unit of the Euclidean line
and whose adic modulus is p. The identity

g(λ) = g(ω−1λ)
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holds when the p–adic component of λ is integral for some prime divisor p of ρ and ω is
an element of the adelic line whose Euclidean component is the Euclidean line and whose
adic modulus is p. The identity

g(λ) = χ(ω)g(ω2λ)

holds for every nonzero principal element ω of the adelic line whose p–adic component is
a unit for every prime divisor p of ρ. When ν is zero, the identity

(2π/ρ) sup

∫
|g(τ + iy)|2dτ =

∫
|f(ξ)|2dξ

holds with the least upper bound taken over all positive numbers y. The identity

(2π/ρ)ν
∫ ∞

0

∫
|g(τ + iy)|2yν−1dτdy = Γ(ν)

∫
|f(ξ)|2dξ

holds when ν is positive. Integration on the left is with respect to the canonical measure
for the fundamental domain of the adelic line. Integration on the right is with respect to
the canonical measure for the fundamental domain of the adelic diplane. These properties
characterize Laplace transforms of order ν and character χ for the adelic diplane. A
function g(λ) of λ in the adelic line is a Laplace transform of order ν and character χ for
the adelic plane if, and only if, it is a Laplace transform of order ν and character χ for the
adelic diplane which satisfies the identity

(1− p)g(λ) = g(ω−1λ)− pg(ωλ)

when the p–adic modulus of λ is an odd power of p for some prime p and ω is an element
of the adelic line whose Euclidean component is the unit of the Euclidean line and whose
adic modulus is p.

The Laplace transformation of order ν and harmonic φ for the adelic skew–plane is a
restriction of the Laplace transformation of order ν and harmonic φ for the adelic skew–
diplane. The domain of the Laplace transformation of order ν and harmonic φ for the
adelic skew–diplane is the space of functions f(ξ) of ξ in the adelic skew–diplane which
satisfy the identity

f( 1
2
ω(ξ + ξ−) + 1

2
ω−1(ξ − ξ−)) = |ω|f(ξ)

for every invertible element ω of the adelic diline, which satisfy the identity

φ(ξ)f(ω−ξω) = φ(ω−ξω)f(ξ)

for every unit ω of the adelic skew–diplane, which satisfy the identity

f(ξ) = f( 1
2(ξ + ξ−) + 1

2ω(ξ − ξ−))

for every nonzero principal element ω of the adelic line, and which are square integrable
with respect to the canonical measure for the fundamental domain of the adelic skew–
diplane. The domain of the Laplace transformation of order ν and harmonic φ for the
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adelic skew–plane is the space of functions f(ξ) of ξ in the adelic skew–diplane which
belong to the domain of the Laplace transformation of order ν and harmonic φ for the
adelic skew–diplane and which vanish when the adic modulus of ξ−ξ is not a rational
number. The Laplace transform of order ν and harmonic φ for the adelic skew–diplane of
the function f(ξ) of ξ in the adelic skew–diplane is a function g(λ) of λ in the adelic upper
half–diplane which is defined by the integral

4πg(λ) =

∫
φ(ξ)−f(ξ)| 1

2
ξ − 1

2
ξ−|−1θ(λ| 1

2
ξ + 1

2
ξ−|| 1

2
ξ − 1

2
ξ−|)dξ

with respect to the canonical measure for the fundamental domain of the adelic skew–
diplane. The notation

| 12ξ + 1
2ξ
−|| 12ξ −

1
2ξ
−|

is used in the argument of the theta function for an element of the adelic diline with
nonnegative Euclidean component which has the same Euclidean and adic modulus as

( 1
2ξ + 1

2ξ
−)( 1

2ξ −
1
2ξ
−).

The function g(λ) of λ in the adelic upper half–diplane is an analytic function of the
Euclidean component of λ when the r–adic component of λ is held fixed. The identity

g(ωλ) = g(λ)

holds for every unit ω of the adelic line whose Euclidean component is the unit of the
Euclidean line. The identity

g(λ) = g(ωλ)

holds for every nonzero principal element ω of the adelic line. The identity

(4π)2+2ν

∫ ∞
0

∫
|g(τ + iy)|2y2νdτdy = Γ(1 + 2ν)

∫
|f(ξ)|2dξ

holds when ν is positive. Integration on the left is with respect to the canonical measure
for the fundamental domain of the adelic diline. Integration on the right is with respect
to the canonical measure for the fundamental domain of the adelic skew–diplane. These
properties characterize Laplace transforms of order ν and harmonic φ for the adelic skew–
diplane. A function g(λ) of λ in the adelic diline is a Laplace transform of order ν and
character χ for the adelic skew–plane if, and only if, it is a Laplace transform of order ν
and character χ for the adelic skew–diplane which satisfies the identity

(1− p)g(λ) = g(ω−1λ)− pg(ωλ)

when the p–adic modulus of λ∗λ is an odd power of p for some prime p and ω is an element
of the adelic diline whose Euclidean component is a unit of the Euclidean line and for
which the r–adic modulus of ω∗ω is equal to p.
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The Radon transformation of order ν and character χ for the adelic diplane is a maximal
dissipative transformation in the space of functions f(ξ) of ξ in the adelic diplane which
vanish when the p–adic component of ξ is not a unit for some prime divisor p of ρ, which
satisfy the identity

f(ωξ) = χ(ω)f(ξ)

for every unit ω of the adelic diplane, which satisfy the identity

f(ξ) = f(ωξ)

for every nonzero principal element ω of the adelic line whose p–adic component is a unit
for every prime divisor p of ρ, and which are square integrable with respect to the canonical
measure for the fundamental domain of the adelic diplane. The transformation takes a
function f(ξ) of ξ in the adelic diplane into a function g(ξ) of the adelic diplane when the
identity

g(ξ) =

∫
f(ξ + η)dη

is formally satisfied with integration with respect to Haar measure for the space of elements
η of the adelic diplane which satisfy the identity

η−ξ + ξ−η = 0.

Haar measure is defined as the Cartesian product of Haar measure for the space of elements
η+ of the Euclidean diplane which satisfy the identity

η−+ξ+ + ξ−+η+ = 0

and Haar measure for the space of elements η− of the adic diplane which satisfy the identity

η−−ξ− + ξ−−η− = 0.

The integral is accepted as the definition of the Radon transformation of order ν and
character χ for the adelic diplane when

f(ξ) = χ(ξ)θ(λξ−ξ)

for an element λ of the adelic upper half–plane whose p–adic component is a unit for every
prime divisor p of ρ, in which case

g(ξ) = (iρ/λ+)
1
2 |λ|−

1
2
− f(ξ)

with the square root of iρ/λ+ taken in the right half–plane. The adjoint of the Radon
transformation of order ν and character χ for the adelic diplane takes a function f(ξ) of ξ
in the adelic diplane into a function g(ξ) of ξ in the adelic diplane when the identity∫

χ(ξ)−g(ξ)θ(λξ−ξ)dξ = (iρ/λ+)
1
2 |λ|−

1
2
−

∫
χ(ξ)−f(ξ)θ(λξ−ξ)dξ
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holds when λ is an element of the adelic upper half–plane whose p–adic component of λ is
a unit for every prime divisor p of ρ. Integration is with respect to the canonical measure
for the fundamental domain of the adelic diplane.

The Radon transformation of order ν and character χ for the adelic plane is a maximal
dissipative transformation in the space of functions f(ξ) of ξ in the adelic diplane which
vanish when the p–adic component of ξ is not a unit for some prime divisor p of ρ or when
the adic modulus of ξ is not a rational number, which satisfy the identity

f(ω) = χ(ω)f(ξ)

for every unit ω of the adelic diplane, which satisfy the identity

f(ξ) = f(ωξ)

for every nonzero principal element ω of the adelic diplane whose p–adic component is a
unit for every prime divisor p of ρ, and which are square integrable with respect to the
canonical measure for the fundamental domain of the adelic diplane. The transformation
takes a function f(ξ) of ξ in the adelic diplane into a function g(ξ) of ξ in the adelic diplane
when the Radon transformation for the adelic diplane takes a function fn(ξ) of ξ in the
adelic diplane into a function gn(ξ) of ξ in the adelic diplane for every positive integer
n, such that the function g(ξ) is the limit of the functions gn(ξ) in the metric topology
of the space of square integrable functions with respect to the canonical measure for the
fundamental domain of the adelic diplane, and such that the function f(ξ) is the limit
in the same topology of the orthogonal projections of the functions fn(ξ) in the space of
functions which vanish when the adic modulus of ξ is not a rational number.

The Radon transformation of order ν and harmonic φ for the adelic skew–diplane is
a maximal dissipative transformation in the space of functions f(ξ) of ξ in the adelic
skew–diplane which satisfy the identity

f( 1
2ω(ξ + ξ−) + 1

2ω
−1(ξ − ξ−)) = |ω|f(ξ)

for every invertible element ω of the adelic diline, which satisfy the identity

φ(ξ)f(ω−ξω) = φ(ω−ξω)f(ξ)

for every unit ω of the adelic skew–diplane, which satisfy the identity

f(ξ) = f( 1
2 (ξ + ξ−) + 1

2ω
−(ξ − ξ−)ω)

for every nonzero principal element ω of the adelic skew–plane, and which are square
integrable with respect to the canonical measure for the fundamental domain of the adelic
skew–diplane. The function

φ(ξ)| 12ξ −
1
2ξ
−|−1θ(λ| 12ξ + 1

2ξ
−|| 12ξ −

1
2ξ
−|)
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of ξ in the adelic skew–diplane is an eigenfunction of the Radon transformation of order
ν and harmonic φ for the adelic skew–diplane for the eigenvalue (i/λ+)|λ|−1

− when λ is in
the adelic upper half–diplane. The adjoint of the Radon transformation of order ν and
harmonic φ for the adelic skew–diplane takes a function f(ξ) of ξ in the adelic skew–diplane
into a function g(ξ) of ξ in the adelic skew–diplane when the identity∫

φ(ξ)−g(ξ)| 1
2
ξ − 1

2
ξ−|−1θ(λ| 1

2
ξ + 1

2
ξ−|| 1

2
ξ − 1

2
ξ−|)dξ

= (i/λ+)|λ|−1
−

∫
φ(ξ)−f(ξ)| 12ξ −

1
2ξ
−|−1θ(λ| 12ξ + 1

2ξ
−|| 12ξ −

1
2ξ
−|)dξ

holds when λ is an element of the adelic upper half–diplane. Integration is with respect to
the canonical measure for the fundamental domain of the adelic skew–diplane.

The Radon transformation of order ν and harmonic φ for the adelic skew–plane is a
maximal dissipative transformation in the space of functions f(ξ) of ξ in the adelic skew–
diplane which satisfy the identity

f( 1
2ω(ξ + ξ−) + 1

2ω
−1(ξ − ξ−)) = |ω|f(ξ)

for every invertible element ω of the adelic diline, which satisfy the identity

φ(ξ)f(ω−ξω) = φ(ω−ξω)f(ξ)

for every unit ω of the adelic skew–diplane, which satisfy the identity

f(ξ) = f( 1
2 (ξ + ξ−) + 1

2ω
−(ξ − ξ−)ω)

for every nonzero principal element ω of the adelic skew–plane, which vanish when the adic
modulus of ξ−ξ is not a rational number, and which are square integrable with respect
to the canonical measure for the fundamental domain of the adelic skew–diplane. The
transformation takes a function f(ξ) of ξ in the adelic skew–diplane into a function g(ξ)
of ξ in the adelic skew–diplane when the Radon transformation of order ν and harmonic
φ for the adelic skew–diplane takes a function fn(ξ) of ξ in the adelic skew–diplane into a
function gn(ξ) of ξ in the adelic skew–diplane for every positive integer n, such that the
function g(ξ) is the limit of the functions gn(ξ) in the metric topology of the space of square
integrable functions with respect to the canonical measure for the fundamental domain of
the adelic skew–diplane, and such that the function f(ξ) is the limit in the same topology
of the orthogonal projections of the functions fn(ξ) in the space of functions which vanish
when the adic modulus of ξ−ξ is not a rational number.

The Mellin transformation of order ν and character χ for the adelic plane is a spectral
theory for the Laplace transformation of order ν and character for the adelic plane. The
domain of the Laplace transformation of order ν and character χ for the adelic plane is the
space of functions f(ξ) of ξ in the adelic diplane which vanish when the p–adic component
of ξ is not a unit for some prime divisor p of ρ or when the adic modulus of ξ is not a
rational number, which satisfy the identity

f(ωξ) = χ(ω)f(ξ)
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for every unit ω of the adelic diplane, which satisfy the identity

f(ξ) = f(ωξ)

for every nonzero principal element ω of the adelic line whose p–adic component is a unit
for every prime divisor p of ρ, and which are square integrable with respect to the canonical
measure for the fundamental domain of the adelic diplane. The Laplace transform of order
ν and character χ for the adelic diplane of the function f(ξ) of ξ in the adelic diplane is
the function g(λ) of λ in the adelic upper half–plane defined by the integral

2πg(λ) =

∫
χ(ξ)−f(ξ)θ(λξ−ξ)dξ

with respect to the canonical measure for the fundamental domain of the adelic diplane.
The Mellin transform of order ν and character χ for the adelic plane of the function f(ξ)
of ξ in the adelic diplane is an analytic function F (z) of z in the upper half–plane which
is defined by the integral

F (z) =

∫ ∞
0

g(λ)t
1
2 ν−

1
2−

1
2 izdt

under the constraint
λ+ = it

when λ− is a unit of the adic line if the function f(ξ) of ξ in the adelic plane vanishes in
the neighborhood |ξ| < a of the origin. A computation of the integral is made from the
zeta function

ζ(s) =
∑

τ(n)n−s

of order ν and character χ for the adelic line, which is defined in the half–plane Rs > 1 as
a sum over the positive integers n which are relatively prime to ρ. The identity

τ(n) = χ(n)−

holds when a positive integer n is relatively prime to ρ. The zeta function is represented
in the half–plane by the Euler product

ζ(s)−1 =
∏

(1− τ(p)p−s)

taken over the primes p which are not divisors of ρ. The analytic weight function

W (z) = (π/ρ)−
1
2 ν−

1
2 + 1

2 izΓ( 1
2ν + 1

2 −
1
2 iz)ζ(1− iz)

is represented in the upper half–plane by the integral

W (z) =

∫ ∞
0

θ(λ)t
1
2 ν−

1
2−

1
2 izdt
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under the constraint
λ+ = it

when λ− is a unit of the adic line. The identity

2πF (z)/W (z) =

∫
χ(ξ)−f(ξ)|ξ|iz−ν−1dξ

holds when z is in the upper half–plane. Integration is with respect to the canonical
measure for the fundamental domain of the adelic diplane. The function

a−izF (z)

of z in the upper half–plane is characterized as an element of the weighted Hardy space
F(W ) which satisfies the identity∫ +∞

−∞
|F (t)/W (t)|2dt =

∫
|f(ξ)|2dξ.

Integration on the right is with respect to the canonical measure for the fundamental
domain of the adelic diplane. If the Hankel transform of order ν and character χ for the
adelic plane of the function f(ξ) of ξ in the adelic diplane is a function g(ξ) of ξ in the
adelic diplane which vanishes when |ξ| < a, then the Mellin transform of order ν and
character χ for the adelic plane of the function g(ξ)− of ξ in the adelic diplane is an entire
function which is the analytic extension of F ∗(z) to the complex plane.

The Mellin transform of order ν and harmonic φ for the adelic skew–plane is a spectral
theory for the Laplace transformation of order ν and harmonic φ for the adelic skew–
plane. The domain of the Laplace transformation of order ν and harmonic φ for the adelic
skew–plane is the space of functions f(ξ) of ξ in the adelic skew–diplane which satisfy the
identity

f( 1
2ω(ξ + ξ−) + 1

2ω
−1(ξ − ξ−)) = |ω|f(ξ)

for every invertible element ω of the adelic diline, which satisfy the identity

φ(ξ)f(ω−ξω) = φ(ω−ξω)f(ξ)

for every unit ω of the adelic skew–diplane, which satisfy the identity

f(ξ) = f( 1
2 (ξ + ξ−) + 1

2ω
−(ξ − ξ−)ω)

for every nonzero principal element ω of the adelic line, which vanish when the adic modulus
of ξ−ξ is not a rational number, and which are square integrable with respect to the
canonical measure for the fundamental domain of the adelic skew–diplane. The Laplace
transform of order ν and harmonic φ for the adelic skew–plane of the function f(ξ) of ξ in
the adelic skew–diplane is the function g(λ) of λ in the adelic upper half–diplane which is
defined by the integral

4πg(λ) =

∫
φ(ξ)−f(ξ)| 12ξ −

1
2ξ
−|−1θ(λ| 12ξ + 1

2ξ
−|| 12ξ −

1
2ξ
−|)dξ
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with respect to the canonical measure for the fundamental domain of the adelic skew–
diplane. The notation

| 1
2
ξ + 1

2
ξ−|| 1

2
ξ − 1

2
ξ−|

is used in the argument of the theta function for an element of the adelic diline with
nonnegative Euclidean component which has the same Euclidean and adic modulus as

( 1
2ξ + 1

2ξ
−)( 1

2ξ −
1
2ξ
−).

The Mellin transform of order ν and harmonic φ for the adelic skew–plane of the function
f(ξ) of ξ in the adelic skew–diplane is an analytic function F (z) of z in the upper half–plane
which is defined by the integral

F (z) =

∫ ∞
0

g(λ)tν−izdt

under the constraint
λ+ = it

when λ− is a unit of the adic diline if the function f(ξ) of ξ in the adelic skew–diplane
vanishes in the neighborhood | 1

2
ξ + 1

2
ξ−|| 1

2
ξ − 1

2
ξ−| < a of the origin. A computation of

the integral is made using the zeta function

ζ(s) =
∑

τ(n)n−s

of order ν and harmonic φ for the adelic skew–plane, which is defined in the half–plane
Rs > 1 as a sum over the positive integers n. The Euler product

ζ(s)−1 = (1− τ(2)2−s)
∏

(1− τ(p)p−s + p−2s)

is taken over the odd primes p. The zeta function has no zeros in the half–plane Rs > 1.
The analytic weight function

W (z) = (2π)−ν−
1
2 +izΓ(ν + 1

2
− iz)ζ(1− iz)

is represented in the upper half–plane by the integral

W (z) =

∫ ∞
0

θ(λ)tν−izdt

under the constraint
λ+ = it

when λ− is a unit of the adic diline. The identity

4πF (z)/W (z) =

∫
φ(ξ)−f(ξ)| 12ξ + 1

2ξ
−|iz−ν−1| 12ξ −

1
2ξ
−|iz−ν−2dξ
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holds when z is in the upper half–plane with integration with respect to the canonical
measure for the fundamental domain of the adelic skew–diplane. The function

a−izF (z)

is characterized as an element of the weighted Hardy space F(W ) which satisfies the
identity ∫ +∞

−∞
|F (t)/W (t)|2dt = 1

2

∫
|f(ξ)|2dξ.

Integration on the right is with respect to the canonical measure for the fundamental
domain of the adelic skew–diplane. If the Hankel transformation of order ν and harmonic
φ for the adelic skew–plane of the function f(ξ) of ξ in the adelic skew–diplane is a function
g(ξ) of ξ in the adelic skew–diplane which vanishes when | 12ξ + 1

2ξ
−|| 12ξ −

1
2ξ
−| < a, then

the Mellin transform of order ν and harmonic φ for the adelic skew–plane of the function
g(ξ)− of ξ in the adelic skew–diplane is an entire function which is the analytic extension
of F ∗(z) to the complex plane.

The functional identity for the zeta function of order ν and character χ for the adelic
plane is applied for the construction of the Sonine spaces of order ν and character χ for
the adelic plane. When χ is not the principal character, the functional identity states that
the entire functions

(π/ρ)−
1
2 ν− 1

2 + 1
2 sΓ( 1

2ν + 1
2 −

1
2s)ζ(1− s−)−

of s are linearly dependent. The Sonine spaces of order ν and character χ for the adelic
plane are defined using the analytic weight function

W (z) = (π/ρ)−
1
2 ν+ 1

2 + 1
2 izΓ( 1

2
ν + 1

2
− 1

2
iz)ζ(1− iz)

constructed from the zeta function of order ν and character χ for the adelic plane. The
space of parameter a contains the entire functions F (z) such that

a−izF (z)

and
a−izF ∗(z)

belong to the weighted Hardy space F(W ). A Hilbert space of entire functions which
satisfies the axioms (H1), (H2), and (H3) is obtained when a scalar product is introduced
so that multiplication by a−iz is an isometric transformation of the space into the space
F(W ). The weight function is an entire function of Pólya class such that W (z − i) and
W ∗(z) are linearly dependent when χ is not the principal character. The space is then a
space H(E) with

E(z) = aizW (z)

when a is less than or equal to one.
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The Mellin transformation of order ν and character χ for the adelic plane supplies
information about the Sonine spaces of order ν and character χ for the adelic plane when
χ is not the principal character. The Sonine space of parameter one is a space H(E) whose
defining function

E(z) = (π/ρ)−
1
2 ν−

1
2 + 1

2 izΓ( 1
2ν + 1

2 −
1
2 iz)ζ(1− iz)

is constructed from the zeta function of order ν and character χ for the adelic plane. The
analytic weight function

W (z) = (π/ρ)−
1
2 ν−

1
2 + 1

2 izΓ( 1
2ν + 1

2 −
1
2 iz)

is used to define the Sonine spaces of order ν for the Euclidean plane. Multiplication by
the analytic function

ζ(1− iz)−1

of z in the upper half–plane is an isometric transformation of the space H(E) into the
space F(W ). A maximal dissipative transformation in the weighted Hardy space F(W )
is defined by taking F (z) into F (z + i) whenever F (z) and F (z + i) belong to the space.
A maximal dissipative transformation is induced in the space H(E). The transformation
takes F (z) into G(z + i) when a sequence of elements Hn(z) of the weighted Hardy space
exists such that Hn(z + i) belongs to the space for every n, such that ζ(1− iz)−1G(z + i)
is the limit of the functions Hn(z + i) in the metric topology of the space, and such
that ζ(1 − iz)−1F (z) is the limit in the metric topology of the space of the orthogonal
projections of the functions Hn(z) in the image in the space of the space H(E). A closed
dissipative relation is constructed in the space H(E). The maximal dissipative property
of the relation is obtained from an approximate construction using properties of entire
functions of Pólya class which are determined by their zeros. The existence of a maximal
dissipative transformation is an application of the representation of elements of the space
H(E) as Mellin transforms of order ν and character χ for the adelic plane. The maximal
dissipative transformation in the space H(E) is unitarily equivalent to the adjoint of the
Radon transformation of order ν and character χ for the adelic plane as it acts on functions
f(ξ) of ξ in the adelic plane which vanish when |ξ| < 1 and whose Hankel transform of
orders ν and character χ for the adelic plane vanishes when |ξ| < 1.

The author thanks Yashowanto Ghosh for predoctoral participation in courses and sem-
inars preparing the proof of the Riemann hypothesis and for postdoctoral reading of a
preliminary manuscript during a visit to Purdue University in March 2003.
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